import gradio as gr import os from all_models import models from externalmod import gr_Interface_load, save_image, randomize_seed from prompt_extend import extend_prompt import asyncio from threading import RLock lock = RLock() HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary. inference_timeout = 300 MAX_SEED = 2**32-1 current_model = models[0] text_gen1 = extend_prompt models2 = [gr_Interface_load(f"models/{m}", live=False, preprocess=True, postprocess=False, hf_token=HF_TOKEN) for m in models] def text_it1(inputs, text_gen1=text_gen1): go_t1 = text_gen1(inputs) return(go_t1) def set_model(current_model): current_model = models[current_model] return gr.update(label=(f"{current_model}")) def send_it1(inputs, model_choice, neg_input, height, width, steps, cfg, seed): output1 = gen_fn(model_choice, inputs, neg_input, height, width, steps, cfg, seed) return (output1) # https://huggingface.co/docs/api-inference/detailed_parameters # https://huggingface.co/docs/huggingface_hub/package_reference/inference_client async def infer(model_index, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1, timeout=inference_timeout): kwargs = {} if height > 0: kwargs["height"] = height if width > 0: kwargs["width"] = width if steps > 0: kwargs["num_inference_steps"] = steps if cfg > 0: cfg = kwargs["guidance_scale"] = cfg if seed == -1: kwargs["seed"] = randomize_seed() else: kwargs["seed"] = seed task = asyncio.create_task(asyncio.to_thread(models2[model_index].fn, prompt=prompt, negative_prompt=nprompt, **kwargs, token=HF_TOKEN)) await asyncio.sleep(0) try: result = await asyncio.wait_for(task, timeout=timeout) except asyncio.TimeoutError as e: print(e) print(f"Task timed out: {models[model_index]}") if not task.done(): task.cancel() result = None raise Exception(f"Task timed out: {models[model_index]}") from e except Exception as e: print(e) if not task.done(): task.cancel() result = None raise Exception() from e if task.done() and result is not None and not isinstance(result, tuple): with lock: png_path = "image.png" image = save_image(result, png_path, models[model_index], prompt, nprompt, height, width, steps, cfg, seed) return image return None def gen_fn(model_index, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1): try: loop = asyncio.new_event_loop() result = loop.run_until_complete(infer(model_index, prompt, nprompt, height, width, steps, cfg, seed, inference_timeout)) except (Exception, asyncio.CancelledError) as e: print(e) print(f"Task aborted: {models[model_index]}") result = None raise gr.Error(f"Task aborted: {models[model_index]}, Error: {e}") finally: loop.close() return result css=""" .gradio-container {background-image: linear-gradient(#254150, #1e2f40, #182634) !important; color: #ffaa66 !important; font-family: 'IBM Plex Sans', sans-serif !important;} h1 {font-size: 6em; color: #ffc99f; margin-top: 30px; margin-bottom: 30px; text-shadow: 3px 3px 0 rgba(0, 0, 0, 1) !important;} h3 {color: #ffc99f; !important;} h4 {display: inline-block; color: #ffffff !important;} .wrapper img {font-size: 98% !important; white-space: nowrap !important; text-align: center !important; display: inline-block !important; color: #ffffff !important;} .wrapper {color: #ffffff !important;} .gr-box {background-image: linear-gradient(#182634, #1e2f40, #254150) !important; border-top-color: #000000 !important; border-right-color: #ffffff !important; border-bottom-color: #ffffff !important; border-left-color: #000000 !important;} """ with gr.Blocks(theme='John6666/YntecDark', fill_width=True, css=css) as myface: gr.HTML(f"""