# Copyright (c) Meta Platforms, Inc. and affiliates. import numpy as np import torch def from_homogeneous(points, eps: float = 1e-8): """Remove the homogeneous dimension of N-dimensional points. Args: points: torch.Tensor or numpy.ndarray with size (..., N+1). Returns: A torch.Tensor or numpy ndarray with size (..., N). """ return points[..., :-1] / (points[..., -1:] + eps) def to_homogeneous(points): """Convert N-dimensional points to homogeneous coordinates. Args: points: torch.Tensor or numpy.ndarray with size (..., N). Returns: A torch.Tensor or numpy.ndarray with size (..., N+1). """ if isinstance(points, torch.Tensor): pad = points.new_ones(points.shape[:-1] + (1,)) return torch.cat([points, pad], dim=-1) elif isinstance(points, np.ndarray): pad = np.ones((points.shape[:-1] + (1,)), dtype=points.dtype) return np.concatenate([points, pad], axis=-1) else: raise ValueError @torch.jit.script def undistort_points(pts, dist): dist = dist.unsqueeze(-2) # add point dimension ndist = dist.shape[-1] undist = pts valid = torch.ones(pts.shape[:-1], device=pts.device, dtype=torch.bool) if ndist > 0: k1, k2 = dist[..., :2].split(1, -1) r2 = torch.sum(pts**2, -1, keepdim=True) radial = k1 * r2 + k2 * r2**2 undist = undist + pts * radial # The distortion model is supposedly only valid within the image # boundaries. Because of the negative radial distortion, points that # are far outside of the boundaries might actually be mapped back # within the image. To account for this, we discard points that are # beyond the inflection point of the distortion model, # e.g. such that d(r + k_1 r^3 + k2 r^5)/dr = 0 limited = ((k2 > 0) & ((9 * k1**2 - 20 * k2) > 0)) | ((k2 <= 0) & (k1 > 0)) limit = torch.abs( torch.where( k2 > 0, (torch.sqrt(9 * k1**2 - 20 * k2) - 3 * k1) / (10 * k2), 1 / (3 * k1), ) ) valid = valid & torch.squeeze(~limited | (r2 < limit), -1) if ndist > 2: p12 = dist[..., 2:] p21 = p12.flip(-1) uv = torch.prod(pts, -1, keepdim=True) undist = undist + 2 * p12 * uv + p21 * (r2 + 2 * pts**2) return undist, valid