# Copyright (c) Meta Platforms, Inc. and affiliates. # Adapted from PixLoc, Paul-Edouard Sarlin, ETH Zurich # https://github.com/cvg/pixloc # Released under the Apache License 2.0 """ Base class for trainable models. """ from abc import ABCMeta, abstractmethod from copy import copy from omegaconf import OmegaConf from torch import nn class BaseModel(nn.Module, metaclass=ABCMeta): required_data_keys = [] strict_conf = True def __init__(self, conf): """Perform some logic and call the _init method of the child model.""" super().__init__() self.conf = conf OmegaConf.set_readonly(conf, True) OmegaConf.set_struct(conf, True) self.required_data_keys = copy(self.required_data_keys) self._init(conf) def forward(self, data): """Check the data and call the _forward method of the child model.""" def recursive_key_check(expected, given): for key in expected: assert key in given, f"Missing key {key} in data" if isinstance(expected, dict): recursive_key_check(expected[key], given[key]) recursive_key_check(self.required_data_keys, data) return self._forward(data) @abstractmethod def _init(self, conf): """To be implemented by the child class.""" raise NotImplementedError @abstractmethod def _forward(self, data): """To be implemented by the child class.""" raise NotImplementedError def loss(self, pred, data): """To be implemented by the child class.""" raise NotImplementedError def metrics(self): return {} # no metrics