# Copyright (c) Meta Platforms, Inc. and affiliates. # Adapted from Hierarchical-Localization, Paul-Edouard Sarlin, ETH Zurich # https://github.com/cvg/Hierarchical-Localization/blob/master/hloc/utils/viz.py # Released under the Apache License 2.0 import numpy as np import torch def features_to_RGB(*Fs, masks=None, skip=1): """Project a list of d-dimensional feature maps to RGB colors using PCA.""" from sklearn.decomposition import PCA def normalize(x): return x / np.linalg.norm(x, axis=-1, keepdims=True) if masks is not None: assert len(Fs) == len(masks) flatten = [] for i, F in enumerate(Fs): c, h, w = F.shape F = np.rollaxis(F, 0, 3) F_flat = F.reshape(-1, c) if masks is not None and masks[i] is not None: mask = masks[i] assert mask.shape == F.shape[:2] F_flat = F_flat[mask.reshape(-1)] flatten.append(F_flat) flatten = np.concatenate(flatten, axis=0) flatten = normalize(flatten) pca = PCA(n_components=3) if skip > 1: pca.fit(flatten[::skip]) flatten = pca.transform(flatten) else: flatten = pca.fit_transform(flatten) flatten = (normalize(flatten) + 1) / 2 Fs_rgb = [] for i, F in enumerate(Fs): h, w = F.shape[-2:] if masks is None or masks[i] is None: F_rgb, flatten = np.split(flatten, [h * w], axis=0) F_rgb = F_rgb.reshape((h, w, 3)) else: F_rgb = np.zeros((h, w, 3)) indices = np.where(masks[i]) F_rgb[indices], flatten = np.split(flatten, [len(indices[0])], axis=0) F_rgb = np.concatenate([F_rgb, masks[i][..., None]], axis=-1) Fs_rgb.append(F_rgb) assert flatten.shape[0] == 0, flatten.shape return Fs_rgb def one_hot_argmax_to_rgb(y, num_class): ''' Args: probs: (B, C, H, W) num_class: int 0: road 0 1: crossing 1 2: explicit_pedestrian 2 4: building 6: terrain 7: parking ` ''' class_colors = { 'road': (0, 0, 0), # 0: Black 'crossing': (255, 0, 0), # 1; Red 'explicit_pedestrian': (255, 255, 0), # 2: Yellow # 'explicit_void': (128, 128, 128), # 3: White 'park': (0, 255, 0), # 4: Green 'building': (255, 0, 255), # 5: Magenta 'water': (0, 0, 255), # 6: Blue 'terrain': (0, 255, 255), # 7: Cyan 'parking': (170, 170, 170), # 8: Dark Grey 'train': (85, 85, 85) , # 9: Light Grey 'predicted_void': (256, 256, 256) } class_colors = class_colors.values() class_colors = [torch.tensor(x) for x in class_colors] argmaxed = torch.argmax((y > 0.5).float(), dim=1) # Take argmax argmaxed[torch.all(y <= 0.5, dim=1)] = num_class # print(argmaxed.shape) seg_rgb = torch.ones( ( argmaxed.shape[0], 3, argmaxed.shape[1], argmaxed.shape[2], ) ) * 256 for i in range(num_class + 1): seg_rgb[:, 0, :, :][argmaxed == i] = class_colors[i][0] seg_rgb[:, 1, :, :][argmaxed == i] = class_colors[i][1] seg_rgb[:, 2, :, :][argmaxed == i] = class_colors[i][2] return seg_rgb