# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import warnings import torch.nn.functional as F def resize(input, size=None, scale_factor=None, mode="nearest", align_corners=None, warning=False): if warning: if size is not None and align_corners: input_h, input_w = tuple(int(x) for x in input.shape[2:]) output_h, output_w = tuple(int(x) for x in size) if output_h > input_h or output_w > output_h: if ( (output_h > 1 and output_w > 1 and input_h > 1 and input_w > 1) and (output_h - 1) % (input_h - 1) and (output_w - 1) % (input_w - 1) ): warnings.warn( f"When align_corners={align_corners}, " "the output would more aligned if " f"input size {(input_h, input_w)} is `x+1` and " f"out size {(output_h, output_w)} is `nx+1`" ) return F.interpolate(input, size, scale_factor, mode, align_corners)