Mapper / mapper /models /segmentation_head.py
Cherie Ho
Initial upload
fd01725
raw
history blame
3.2 kB
import torch
import torch.nn as nn
import torchvision.models as models
class UpsamplingAdd(nn.Module):
def __init__(self, in_channels: int, out_channels: int, scale_factor: int = 2):
super().__init__()
self.upsample_layer = nn.Sequential(
nn.Upsample(
scale_factor=scale_factor, mode="bilinear", align_corners=False
),
nn.Conv2d(in_channels, out_channels,
kernel_size=1, padding=0, bias=False),
nn.InstanceNorm2d(out_channels),
)
def forward(self, x: torch.Tensor, x_skip: torch.Tensor):
# Check if the width dimension is odd and needs zero padding
x = self.upsample_layer(x)
if x.shape[-1] != x_skip.shape[-1] or x.shape[-2] != x_skip.shape[-2]:
x = nn.functional.interpolate(
x, size=(x_skip.shape[-2], x_skip.shape[-1]), mode="bilinear"
)
return x + x_skip
class SegmentationHead(nn.Module):
def __init__(self, in_channels: int, n_classes: int, dropout_rate: float = 0.0):
super(SegmentationHead, self).__init__()
backbone = models.resnet18(pretrained=False, zero_init_residual=True)
self.first_conv = nn.Conv2d(
in_channels, 64, kernel_size=7, stride=2, padding=3, bias=False
)
self.bn1 = backbone.bn1
self.relu = backbone.relu
self.layer1 = backbone.layer1
self.layer2 = backbone.layer2
self.layer3 = backbone.layer3
# Upsampling layers
self.up3_skip = UpsamplingAdd(
in_channels=256, out_channels=128, scale_factor=2)
self.up2_skip = UpsamplingAdd(
in_channels=128, out_channels=64, scale_factor=2)
self.up1_skip = UpsamplingAdd(
in_channels=64, out_channels=in_channels, scale_factor=2)
# Segmentation head
self.dropout = nn.Dropout(
dropout_rate) if dropout_rate > 0 else nn.Identity()
self.segmentation_head = nn.Sequential(
nn.Conv2d(in_channels, in_channels,
kernel_size=3, padding=1, bias=False),
nn.InstanceNorm2d(in_channels),
nn.ReLU(inplace=True),
self.dropout,
nn.Conv2d(in_channels, n_classes, kernel_size=1, padding=0),
)
def forward(self, x: torch.Tensor):
# (H, W)
skip_x = {"1": x}
x = self.first_conv(x)
x = self.bn1(x)
x = self.relu(x)
x = self.dropout(x)
# (H/4, W/4)
x = self.layer1(x)
skip_x["2"] = x
x = self.dropout(x)
x = self.layer2(x)
skip_x["3"] = x
x = self.dropout(x)
# (H/8, W/8)
x = self.layer3(x)
x = self.dropout(x)
# First upsample to (H/4, W/4)
x = self.up3_skip(x, skip_x["3"])
x = self.dropout(x)
# Second upsample to (H/2, W/2)
x = self.up2_skip(x, skip_x["2"])
x = self.dropout(x)
# Third upsample to (H, W)
x = self.up1_skip(x, skip_x["1"])
x = self.dropout(x)
segmentation_output = self.segmentation_head(x)
return segmentation_output