# dataset settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) test_dataset_tpye = 'BDDVideoDataset' test_pipeline = [ dict( type='TransformBroadcaster', transforms=[ dict(type='LoadImageFromFile'), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='LoadTrackAnnotations') ]), dict(type='PackTrackInputs') ] val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, sampler=dict(type='TrackImgSampler'), dataset=dict( type=test_dataset_tpye, ann_file='data/bdd/annotations/box_track_20/box_track_val_cocofmt.json', data_prefix=dict(img_path='data/bdd/bdd100k/images/track/val/'), test_mode=True, pipeline=test_pipeline )) test_dataloader = val_dataloader # evaluator val_evaluator = dict( type='BDDTETAMetric', dataset_type=test_dataset_tpye, format_only=False, ann_file='data/bdd/annotations/box_track_20/box_track_val_cocofmt.json', scalabel_gt='data/bdd/annotations/scalabel_gt/box_track_20/val/', metric=['TETA']) test_evaluator = val_evaluator