# %% from pathlib import Path import altair as alt import numpy as np import pandas as pd import solara import solara.lab import sympy as sp from scipy.optimize import root_scalar # %% P1, P2, P4, PT, kD1, kD2 = sp.symbols("P_1 P_2 P_4 P_T k_D1 k_D2", positive=True) # %% sub_p1_p2 = (P1, sp.solve(kD1 * (P2 / P1**2) - 1, P1)[0]) sub_p2_p4 = (P2, sp.solve(kD2 * (P4 / P2**2) - 1, P2)[0]) sub_p4_p2 = (P4, sp.solve(kD2 * (P4 / P2**2) - 1, P4)[0]) # %% mass_balance = P1 + 2 * P2 + 4 * P4 - PT eq_p4 = mass_balance.subs([sub_p1_p2, sub_p2_p4]) eq_p2 = mass_balance.subs([sub_p1_p2, sub_p4_p2]) # %% def make_df(vmin: float, vmax: float, kD_1_v: float, kD2_v: float) -> pd.DataFrame: PT_values = np.logspace(np.log10(vmin), np.log10(vmax), endpoint=True, num=100) kd_subs = [(kD1, kD_1_v), (kD2, kD2_v)] ld = sp.lambdify([P4, PT], eq_p4.subs(kd_subs)) P4_values = np.array( [root_scalar(ld, bracket=(0, PT_v), args=(PT_v,)).root for PT_v in PT_values] ) ld = sp.lambdify([P2, PT], eq_p2.subs(kd_subs)) P2_values = np.array( [root_scalar(ld, bracket=(0, PT_v), args=(PT_v,)).root for PT_v in PT_values] ) P1_values = PT_values - 2 * P2_values - 4 * P4_values columns = {"P1": P1_values, "P2": P2_values, "P4": P4_values} total = np.sum(list(columns.values()), axis=0) df = pd.DataFrame(dict(PT=PT_values) | {k: v / total for k, v in columns.items()}) return df def make_chart(df: pd.DataFrame) -> alt.LayerChart: source = df.melt("PT", var_name="species", value_name="y") # Create a selection that chooses the nearest point & selects based on x-value nearest = alt.selection_point( nearest=True, on="pointerover", fields=["PT"], empty=False ) # The basic line line = ( alt.Chart(source) .mark_line(interpolate="basis") .encode( x=alt.X( "PT:Q", scale=alt.Scale(type="log"), title="Total protomer concentration", ), y=alt.Y("y:Q", title="Fraction of total"), color="species:N", ) .properties(width="container") ) # Draw points on the line, and highlight based on selection points = ( line.mark_point() .encode(opacity=alt.condition(nearest, alt.value(1), alt.value(0))) .properties(width="container") ) # Draw a rule at the location of the selection rules = ( alt.Chart(source) .transform_pivot("species", value="y", groupby=["PT"]) .mark_rule(color="black") .encode( x="PT:Q", opacity=alt.condition(nearest, alt.value(0.3), alt.value(0)), tooltip=[ alt.Tooltip(c, type="quantitative", format=".2f") for c in df.columns ], ) .add_params(nearest) .properties(width="container") ) # Put the five layers into a chart and bind the data chart = ( alt.layer(line, points, rules) .properties(height=300) .configure(autosize="fit-x") ) return chart md = """ This app calculates monomer and dimer concentrations given a total amount of protomer PT and the dissociation constant KD. More info on how and why can be found [HuggingFace](https://huggingface.co/spaces/Jhsmit/binding-kinetics) (right click, open new tab). """ @solara.component def Page(): solara.Style(Path("style.css")) dark_effective = solara.lab.use_dark_effective() if dark_effective is True: alt.themes.enable("dark") elif dark_effective is False: alt.themes.enable("default") kD1 = solara.use_reactive(1.0) kD2 = solara.use_reactive(100) vmin = solara.use_reactive(1e-3) vmax = solara.use_reactive(1e3) async def update(): df = make_df(vmin.value, vmax.value, kD1.value, kD2.value) chart = make_chart(df) return chart task: solara.lab.Task = solara.lab.use_task( update, dependencies=[kD1.value, kD2.value, vmin.value, vmax.value] ) solara.Title("Tetramerization Kinetics") with solara.Card("Fraction monomer/dimer/tetramer"): with solara.GridFixed(columns=2): with solara.Tooltip("Dissociation constant monomer/dimer"): solara.InputFloat("kD1", value=kD1) with solara.Tooltip("Dissociation constant dimer/tetramer"): solara.InputFloat("kD2", value=kD2) with solara.Tooltip("X axis lower limit"): solara.InputFloat("xmin", value=vmin) with solara.Tooltip("X axis upper limit"): solara.InputFloat("xmax", value=vmax) solara.HTML(tag="div", style="height: 10px") if task.finished: solara.FigureAltair(task.value) # %%