Jhoeel Luna
commited on
Commit
•
bb979cd
0
Parent(s):
Duplicate from Jhoeel/rfmAutoV2
Browse files- .gitattributes +34 -0
- README.md +14 -0
- app.py +72 -0
- requirements.txt +2 -0
.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: RfmAuto
|
3 |
+
emoji: 💩
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: red
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.19.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: openrail
|
11 |
+
duplicated_from: Jhoeel/rfmAutoV2
|
12 |
+
---
|
13 |
+
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import datetime
|
5 |
+
from sklearn.preprocessing import StandardScaler
|
6 |
+
from sklearn.cluster import KMeans
|
7 |
+
|
8 |
+
def calculate_rfm(df):
|
9 |
+
# Convert 'Fecha compra' to datetime and calculate recency
|
10 |
+
df['Fecha compra'] = pd.to_datetime(df['Fecha compra'], format='%m/%d/%Y')
|
11 |
+
today = datetime.datetime.now().date()
|
12 |
+
fecha_actual = pd.to_datetime(today).to_numpy().astype('datetime64[D]')
|
13 |
+
df['recencia'] = (fecha_actual - df['Fecha compra'].to_numpy().astype('datetime64[D]'))
|
14 |
+
df['recencia'] = df['recencia'].astype('timedelta64[D]').astype(int)
|
15 |
+
|
16 |
+
# Group by 'Email' and calculate frequency and monetary value
|
17 |
+
grouped = df.groupby('Email')
|
18 |
+
frequency = grouped['Email'].count().to_frame().rename(columns={"Email": "frecuencia"})
|
19 |
+
monetary = grouped['Valor compra'].sum().to_frame().rename(columns={'Valor compra': 'monetario'})
|
20 |
+
monetary['monetario'] = monetary['monetario'].round(2)
|
21 |
+
|
22 |
+
# Join the recency dataframe with frequency and monetary dataframes
|
23 |
+
df = df.join(frequency, on='Email')
|
24 |
+
df = df.join(monetary, on='Email')
|
25 |
+
|
26 |
+
# Keep only the latest purchase for each customer
|
27 |
+
df = df.sort_values(by=['Email', 'Fecha compra'], ascending=False)
|
28 |
+
df = df.drop_duplicates(subset='Email', keep='first')
|
29 |
+
|
30 |
+
# Clean up the final dataframe
|
31 |
+
df.drop(['Fecha compra', 'Valor compra'], axis=1, inplace=True)
|
32 |
+
df.set_index('Email', inplace=True)
|
33 |
+
|
34 |
+
# Scale the features
|
35 |
+
scaler = StandardScaler()
|
36 |
+
scaled_columns = ['recencia', 'frecuencia', 'monetario']
|
37 |
+
scaled_values = scaler.fit_transform(df[scaled_columns])
|
38 |
+
z_scores = np.abs(scaled_values)
|
39 |
+
outlier_mask = (z_scores > 3).any(axis=1)
|
40 |
+
|
41 |
+
for i, column in enumerate(scaled_columns):
|
42 |
+
df[f"{column}_scaled"] = scaled_values[:, i]
|
43 |
+
|
44 |
+
df = df[~outlier_mask]
|
45 |
+
|
46 |
+
# Cluster the data
|
47 |
+
np.random.seed(0)
|
48 |
+
scaled_columns = ['recencia_scaled', 'frecuencia_scaled', 'monetario_scaled']
|
49 |
+
kmeans = KMeans(n_clusters=5, n_init=10)
|
50 |
+
rfm_clusters = kmeans.fit_predict(df[scaled_columns])
|
51 |
+
df = df.copy()
|
52 |
+
df['cluster'] = rfm_clusters
|
53 |
+
|
54 |
+
# Drop the scaled columns
|
55 |
+
df.drop(scaled_columns, axis=1, inplace=True)
|
56 |
+
|
57 |
+
# Reset the index
|
58 |
+
df = df.reset_index()
|
59 |
+
|
60 |
+
# Return the desired columns
|
61 |
+
return df[['Email', 'recencia', 'frecuencia', 'monetario', 'cluster']]
|
62 |
+
|
63 |
+
|
64 |
+
def read_csv(file):
|
65 |
+
df = pd.read_csv(file.name)
|
66 |
+
return calculate_rfm(df)
|
67 |
+
|
68 |
+
iface = gr.Interface(fn=read_csv,
|
69 |
+
inputs=[gr.inputs.File(label="Select a CSV file")],
|
70 |
+
outputs="dataframe")
|
71 |
+
|
72 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
scikit-learn
|