# -*- coding: utf-8 -*- """ Verbatify — Analyse sémantique NPS (Paste-only, NPS inféré) Interface simplifiée : toutes les options sont appliquées automatiquement. """ import os, re, json, collections, tempfile, zipfile from typing import List, Dict, Optional import pandas as pd import gradio as gr import plotly.express as px import plotly.graph_objects as go import plotly.io as pio # ====================== CSS (externe si présent, sinon fallback) ====================== BASE_DIR = os.path.dirname(os.path.abspath(__file__)) CSS_FILE = os.path.join(BASE_DIR, "verbatim.css") VB_CSS_FALLBACK = r""" @import url('https://fonts.googleapis.com/css2?family=Manrope:wght@400;500;700;800&display=swap'); :root{--vb-bg:#F8FAFC;--vb-text:#0F172A;--vb-primary:#7C3AED;--vb-primary-2:#06B6D4;--vb-border:#E2E8F0;} *{color-scheme:light !important} html,body,.gradio-container{background:var(--vb-bg)!important;color:var(--vb-text)!important; font-family:Manrope,system-ui,-apple-system,'Segoe UI',Roboto,Arial,sans-serif!important} .gradio-container{max-width:1120px!important;margin:0 auto!important} .vb-hero{display:flex;align-items:center;gap:16px;padding:20px 22px;margin:10px 0 20px; background:linear-gradient(90deg,rgba(124,58,237,.18),rgba(6,182,212,.18));border:1px solid var(--vb-border); border-radius:14px;box-shadow:0 10px 26px rgba(2,6,23,.08)} .vb-hero .vb-title{font-size:22px;color:#0F172A;font-weight:500} .vb-hero .vb-sub{font-size:13px;color:#0F172A} .gradio-container .vb-cta{background:linear-gradient(90deg,var(--vb-primary),var(--vb-primary-2))!important;color:#fff!important; border:0!important;font-weight:700!important;font-size:16px!important;padding:14px 18px!important;border-radius:14px!important; box-shadow:0 10px 24px rgba(124,58,237,.28)} .gradio-container .vb-cta:hover{transform:translateY(-2px);filter:brightness(1.05)} /* Patch encarts vides & texte noir partout */ .gradio-container .empty, .gradio-container [class*="unpadded_box"], .gradio-container [class*="unpadded-box"], .gradio-container .empty[class*="box"]{background:#FFFFFF!important;background-image:none!important;border:1px solid transparent!important;box-shadow:none!important} .gradio-container .empty *, .gradio-container [class*="unpadded_box"] *{color:#0F172A!important;fill:#0F172A!important} """ VB_CSS = None try: if os.path.exists(CSS_FILE): with open(CSS_FILE, "r", encoding="utf-8") as f: VB_CSS = f.read() except Exception: VB_CSS = None if not VB_CSS: VB_CSS = VB_CSS_FALLBACK # ====================== Plotly theme ====================== def apply_plotly_theme(): pio.templates["verbatify"] = go.layout.Template( layout=go.Layout( font=dict(family="Manrope, system-ui, -apple-system, Segoe UI, Roboto, Arial, sans-serif", size=13, color="#0F172A"), paper_bgcolor="white", plot_bgcolor="white", colorway=["#7C3AED","#06B6D4","#2563EB","#10B981","#A855F7","#22D3EE","#1D4ED8","#0EA5E9"], xaxis=dict(gridcolor="#E2E8F0", zerolinecolor="#E2E8F0"), yaxis=dict(gridcolor="#E2E8F0", zerolinecolor="#E2E8F0"), legend=dict(borderwidth=0, bgcolor="rgba(255,255,255,0)") ) ) pio.templates.default = "verbatify" LOGO_SVG = """ Verbatify """ # ====================== unidecode fallback ====================== try: from unidecode import unidecode except Exception: import unicodedata def unidecode(x): try: return unicodedata.normalize('NFKD', str(x)).encode('ascii','ignore').decode('ascii') except Exception: return str(x) # ====================== Thésaurus ASSURANCE ====================== THEMES = { "Remboursements santé":[r"\bremboursement[s]?\b", r"\bt[eé]l[eé]transmission\b", r"\bno[eé]mie\b", r"\bprise\s*en\s*charge[s]?\b", r"\btaux\s+de\s+remboursement[s]?\b", r"\b(ameli|cpam)\b", r"\bcompl[eé]mentaire\s+sant[eé]\b", r"\bmutuelle\b", r"\battestation[s]?\b", r"\bcarte\s+(mutuelle|tiers\s*payant)\b"], "Tiers payant / Réseau de soins":[r"\btiers\s*payant\b", r"\br[ée]seau[x]?\s+de\s+soins\b", r"\b(optique|dentaire|hospitalisation|pharmacie)\b", r"\bitelis\b", r"\bsant[eé]clair\b", r"\bkalixia\b"], "Sinistres / Indemnisation":[r"\bsinistre[s]?\b", r"\bindemni(sation|ser)\b", r"\bexpertis[ea]\b", r"\bd[eé]claration\s+de\s+sinistre\b", r"\bconstat\b", r"\bbris\s+de\s+glace\b", r"\bassistance\b", r"\bd[ée]pannage\b"], "Adhésion / Contrat":[r"\badh[eé]sion[s]?\b", r"\bsouscription[s]?\b", r"\baffiliation[s]?\b", r"\bcontrat[s]?\b", r"\bavenant[s]?\b", r"\bcarence[s]?\b", r"\brenouvellement[s]?\b", r"\br[eé]siliation[s]?\b"], "Garanties / Exclusions / Franchise":[r"\bgarantie[s]?\b", r"\bexclusion[s]?\b", r"\bplafond[s]?\b", r"\bfranchise[s]?\b", r"\bconditions\s+g[eé]n[eé]rales\b", r"\bnotice\b"], "Cotisations / Facturation":[r"\bcotisation[s]?\b", r"\bpr[eé]l[eè]vement[s]?\b", r"\bech[eé]ancier[s]?\b", r"\bfacture[s]?\b", r"\berreur[s]?\s+de\s+facturation\b", r"\bremboursement[s]?\b", r"\bRIB\b", r"\bIBAN\b"], "Délais & Suivi dossier":[r"\bd[eé]lai[s]?\b", r"\btraitement[s]?\b", r"\bsuivi[s]?\b", r"\brelance[s]?\b", r"\bretard[s]?\b"], "Espace client / App / Connexion":[r"\bespace\s+client\b", r"\bapplication\b", r"\bapp\b", r"\bsite\b", r"\bconnexion\b", r"\bidentifiant[s]?\b", r"\bmot\s+de\s+passe\b", r"\bpaiement\s+en\s+ligne\b", r"\bbogue[s]?\b", r"\bbug[s]?\b", r"\bnavigation\b", r"\binterface\b", r"\bUX\b"], "Support / Conseiller":[r"\bSAV\b", r"\bservice[s]?\s+client[s]?\b", r"\bconseiller[s]?\b", r"\b[rR][eé]ponse[s]?\b", r"\bjoignable[s]?\b", r"\brapp?el\b"], "Communication / Transparence":[r"\binformation[s]?\b", r"\bcommunication\b", r"\btransparence\b", r"\bclart[eé]\b", r"\bcourrier[s]?\b", r"\bmail[s]?\b", r"\bnotification[s]?\b"], "Prix":[r"\bprix\b", r"\bcher[s]?\b", r"\bco[uû]t[s]?\b", r"\btarif[s]?\b", r"\bcomp[eé]titif[s]?\b", r"\babusif[s]?\b", r"\bbon\s+rapport\s+qualit[eé]\s*prix\b"], "Offre / Gamme":[r"\boffre[s]?\b", r"\bgamme[s]?\b", r"\bdisponibilit[eé][s]?\b", r"\bdevis\b", r"\bchoix\b", r"\bcatalogue[s]?\b"], "Produit/Qualité":[r"\bqualit[eé]s?\b", r"\bfiable[s]?\b", r"\bconforme[s]?\b", r"\bnon\s+conforme[s]?\b", r"\bd[eé]fectueux?[es]?\b", r"\bperformant[e]?[s]?\b"], "Agence / Accueil":[r"\bagence[s]?\b", r"\bboutique[s]?\b", r"\baccueil\b", r"\bconseil[s]?\b", r"\battente\b", r"\bcaisse[s]?\b"], } # ====================== Sentiment (règles) ====================== POS_WORDS = { "bien":1.0,"super":1.2,"parfait":1.4,"excellent":1.5,"ravi":1.2,"satisfait":1.0, "rapide":0.8,"efficace":1.0,"fiable":1.0,"simple":0.8,"facile":0.8,"clair":0.8,"conforme":0.8, "sympa":0.8,"professionnel":1.0,"réactif":1.0,"reactif":1.0,"compétent":1.0,"competent":1.0, "top":1.2,"recommande":1.2,"recommandé":1.2,"bon":0.8 } NEG_WORDS = { "mauvais":-1.2,"horrible":-1.5,"nul":-1.2,"lent":-0.8,"cher":-0.9,"arnaque":-1.5, "déçu":-1.2,"decu":-1.2,"incompétent":-1.3,"bug":-0.9,"bogue":-0.9,"problème":-1.0, "probleme":-1.0,"attente":-0.6,"retard":-0.9,"erreur":-1.0,"compliqué":-0.8,"complique":-0.8, "défectueux":-1.3,"defectueux":-1.3,"non conforme":-1.2,"impossible":-1.0,"difficile":-0.7 } NEGATIONS = [r"\bpas\b", r"\bjamais\b", r"\bplus\b", r"\baucun[e]?\b", r"\brien\b", r"\bni\b", r"\bgu[eè]re\b"] INTENSIFIERS = [r"\btr[eè]s\b", r"\bvraiment\b", r"\bextr[eê]mement\b", r"\bhyper\b"] DIMINISHERS = [r"\bun[e]?\s+peu\b", r"\bassez\b", r"\bplut[oô]t\b", r"\bl[eé]g[eè]rement\b"] INTENSIFIER_W, DIMINISHER_W = 1.5, 0.7 # ====================== OpenAI (auto) ====================== OPENAI_AVAILABLE = False try: from openai import OpenAI if os.getenv("OPENAI_API_KEY"): _client = OpenAI() OPENAI_AVAILABLE = True except Exception: OPENAI_AVAILABLE = False OA_MODEL = os.getenv("OPENAI_MODEL", "gpt-4o-mini") OA_TEMP = float(os.getenv("OPENAI_TEMP", "0.1")) TOP_K = int(os.getenv("VERBATIFY_TOPK", "10")) # ====================== Utils ====================== def normalize(t:str)->str: if not isinstance(t,str): return "" return re.sub(r"\s+"," ",t.strip()) def to_analyzable(t:str)->str: return unidecode(normalize(t.lower())) def window_has(patterns:List[str], toks:List[str], i:int, w:int=3)->bool: s=max(0,i-w); e=min(len(toks),i+w+1); win=" ".join(toks[s:e]) return any(re.search(p,win) for p in patterns) def lexical_sentiment_score(text:str)->float: toks = to_analyzable(text).split(); score=0.0 for i,t in enumerate(toks): base = POS_WORDS.get(t,0.0) or NEG_WORDS.get(t,0.0) if not base and istr: return "positive" if s>=0.3 else ("negatif" if s<=-0.3 else "neutre") def detect_themes_regex(text:str): t=to_analyzable(text); counts={} for th,pats in THEMES.items(): c=sum(len(re.findall(p,t)) for p in pats) if c>0: counts[th]=c return list(counts.keys()), counts def nps_bucket(s): try: v=int(s) except: return "inconnu" return "promoter" if v>=9 else ("passive" if v>=7 else ("detractor" if v>=0 else "inconnu")) def compute_nps(series): vals=[] for x in series.dropna().tolist(): try: v=int(x) if 0<=v<=10: vals.append(v) except: pass if not vals: return None tot=len(vals); pro=sum(1 for v in vals if v>=9); det=sum(1 for v in vals if v<=6) return 100.0*(pro/tot - det/tot) def anonymize(t:str)->str: if not isinstance(t,str): return "" t=re.sub(r"[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}","[email]",t) t=re.sub(r"\b(?:\+?\d[\s.-]?){7,}\b","[tel]",t) return t # --------- Coller du texte → DataFrame (AUTO : détecte "| note" en fin de ligne) ---------- def df_from_pasted_auto(text:str) -> pd.DataFrame: lines = [l.strip() for l in (text or "").splitlines() if l.strip()] rows = [] pat = re.compile(r"\|\s*(-?\d{1,2})\s*$") for i, line in enumerate(lines, 1): m = pat.search(line) if m: verb = line[:m.start()].strip() score = m.group(1) rows.append({"id": i, "comment": verb, "nps_score": pd.to_numeric(score, errors="coerce")}) else: rows.append({"id": i, "comment": line, "nps_score": None}) return pd.DataFrame(rows) # --------- OpenAI helpers (auto) ---------- def openai_json(model:str, system:str, user:str, temperature:float=0.0) -> Optional[dict]: if not OPENAI_AVAILABLE: return None try: resp = _client.chat.completions.create( model=model, temperature=temperature, messages=[{"role":"system","content":system},{"role":"user","content":user}], ) txt = resp.choices[0].message.content.strip() m = re.search(r"\{.*\}", txt, re.S) return json.loads(m.group(0) if m else txt) except Exception: return None def oa_sentiment(comment:str) -> Optional[dict]: system = "Tu es un classifieur FR. Réponds strictement en JSON." user = f'Texte: {comment}\nDonne "label" parmi ["positive","neutre","negatif"] et "score" entre -4 et 4. JSON.' return openai_json(OA_MODEL, system, user, OA_TEMP) def oa_themes(comment:str) -> Optional[dict]: system = "Tu maps le texte client vers un thésaurus assurance. Réponds strictement en JSON." user = f"Texte: {comment}\nThésaurus: {json.dumps(list(THEMES.keys()), ensure_ascii=False)}\nRetourne {{'themes': [...], 'counts': {{...}}}}" return openai_json(OA_MODEL, system, user, OA_TEMP) def oa_summary(nps:Optional[float], dist:Dict[str,int], themes_df:pd.DataFrame) -> Optional[str]: system = "Tu es un analyste CX FR. Donne une synthèse courte et actionnable en Markdown." top = [] if themes_df is None else themes_df.head(6).to_dict(orient="records") user = f"Données: NPS={None if nps is None else round(nps,1)}, Répartition={dist}, Thèmes={json.dumps(top, ensure_ascii=False)}" j = openai_json(OA_MODEL, system, user, 0.2) if isinstance(j, dict) and "text" in j: return j["text"] if isinstance(j, dict): return ' '.join(str(v) for v in j.values()) return None # --------- HF sentiment (optionnel) def make_hf_pipe(): try: from transformers import pipeline return pipeline("text-classification", model="cmarkea/distilcamembert-base-sentiment", tokenizer="cmarkea/distilcamembert-base-sentiment") except Exception: return None # --------- Inférence NPS depuis le sentiment ---------- def infer_nps_from_sentiment(label: str, score: float) -> int: scaled = int(round((float(score) + 4.0) * 1.25)) # -4 -> 0, 0 -> 5, +4 -> 10 scaled = max(0, min(10, scaled)) if label == "positive": return max(9, scaled) if label == "negatif": return min(6, scaled) return 8 if score >= 0 else 7 # ====================== Graphiques ====================== def fig_nps_gauge(nps: Optional[float]) -> go.Figure: v = 0.0 if nps is None else float(nps) return go.Figure(go.Indicator(mode="gauge+number", value=v, gauge={"axis":{"range":[-100,100]}, "bar":{"thickness":0.3}}, title={"text":"NPS (−100 à +100)"})) def fig_sentiment_bar(dist: Dict[str,int]) -> go.Figure: order = ["negatif","neutre","positive"] x = [o for o in order if o in dist]; y = [dist.get(o,0) for o in x] return px.bar(x=x, y=y, labels={"x":"Sentiment","y":"Nombre"}, title="Répartition des émotions") def fig_top_themes(themes_df: pd.DataFrame, k: int) -> go.Figure: if themes_df is None or themes_df.empty: return go.Figure() d = themes_df.head(k); fig = px.bar(d, x="theme", y="total_mentions", title=f"Top {k} thèmes — occurrences") fig.update_layout(xaxis_tickangle=-30); return fig def fig_theme_balance(themes_df: pd.DataFrame, k: int) -> go.Figure: if themes_df is None or themes_df.empty: return go.Figure() d = themes_df.head(k) d2 = d.melt(id_vars=["theme"], value_vars=["verbatims_pos","verbatims_neg"], var_name="type", value_name="count") d2["type"] = d2["type"].map({"verbatims_pos":"Positifs","verbatims_neg":"Négatifs"}) fig = px.bar(d2, x="theme", y="count", color="type", barmode="stack", title=f"Top {k} thèmes — balance Pos/Neg") fig.update_layout(xaxis_tickangle=-30); return fig # ====================== Analyse principale (AUTO) ====================== def analyze_text(pasted_txt: str): # 1) Parse auto + anonymisation df = df_from_pasted_auto(pasted_txt or "") if df.empty: raise gr.Error("Colle au moins un verbatim (une ligne).") df["comment"] = df["comment"].apply(anonymize) # 2) Pipes use_oa_sent = use_oa_themes = use_oa_summary = True if not OPENAI_AVAILABLE: use_oa_sent = use_oa_themes = use_oa_summary = False hf_pipe = make_hf_pipe() # 3) Boucle verbatims rows=[]; theme_agg=collections.defaultdict(lambda:{"mentions":0,"pos":0,"neg":0}) used_hf=False; used_oa=False; any_inferred=False for idx, r in df.iterrows(): cid=r.get("id", idx+1); comment=normalize(str(r["comment"])) # Sentiment: OpenAI -> HF -> règles sent=None if use_oa_sent: sent=oa_sentiment(comment); used_oa = used_oa or bool(sent) if not sent and hf_pipe is not None and comment.strip(): try: res=hf_pipe(comment); lab=str(res[0]["label"]).lower(); p=float(res[0].get("score",0.5)) if "1" in lab or "2" in lab: sent = {"label":"negatif","score":-4*p} elif "3" in lab: sent = {"label":"neutre","score":0.0} else: sent = {"label":"positive","score":4*p} used_hf=True except Exception: sent=None if not sent: s=float(lexical_sentiment_score(comment)) sent={"label":lexical_sentiment_label(s),"score":s} # Thèmes: regex (+ fusion OpenAI) themes, counts = detect_themes_regex(comment) if use_oa_themes: tjson=oa_themes(comment) if isinstance(tjson, dict): used_oa=True for th, c in (tjson.get("counts",{}) or {}).items(): if th in THEMES and int(c) > 0: counts[th] = max(counts.get(th, 0), int(c)) themes = [th for th, c in counts.items() if c > 0] # Note NPS existante ou inférée given = r.get("nps_score", None) try: given = int(given) if given is not None and str(given).strip() != "" else None except Exception: given = None if given is None: inferred = infer_nps_from_sentiment(sent["label"], float(sent["score"])) nps_final, nps_source, any_inferred = inferred, "inferred", True else: nps_final, nps_source = given, "given" bucket = nps_bucket(nps_final) for th, c in counts.items(): theme_agg[th]["mentions"] += c if sent["label"] == "positive": theme_agg[th]["pos"] += 1 elif sent["label"] == "negatif": theme_agg[th]["neg"] += 1 rows.append({ "id": cid, "comment": comment, "nps_score_given": given, "nps_score_inferred": nps_final if given is None else None, "nps_score_final": nps_final, "nps_source": nps_source, "nps_bucket": bucket, "sentiment_score": round(float(sent["score"]), 3), "sentiment_label": sent["label"], "sentiment_source": "openai" if (use_oa_sent and used_oa) else ("huggingface" if used_hf else "rules"), "themes": ", ".join(themes) if themes else "", "theme_counts_json": json.dumps(counts, ensure_ascii=False) }) out_df=pd.DataFrame(rows) nps=compute_nps(out_df["nps_score_final"]) dist=out_df["sentiment_label"].value_counts().to_dict() # Stats par thème trs=[] for th, d in theme_agg.items(): trs.append({"theme":th,"total_mentions":int(d["mentions"]), "verbatims_pos":int(d["pos"]),"verbatims_neg":int(d["neg"]), "net_sentiment":int(d["pos"]-d["neg"])}) themes_df=pd.DataFrame(trs).sort_values(["total_mentions","net_sentiment"],ascending=[False,False]) # Synthèse method = "OpenAI + HF + règles" if (OPENAI_AVAILABLE and used_hf) else ("OpenAI + règles" if OPENAI_AVAILABLE else ("HF + règles" if used_hf else "Règles")) nps_label = "NPS global (inféré)" if any_inferred else "NPS global" lines=[ "# Synthèse NPS & ressentis clients", f"- **Méthode** : {method}", f"- **{nps_label}** : {nps:.1f}" if nps is not None else f"- **{nps_label}** : n/a" ] if dist: tot=sum(dist.values()); pos=dist.get("positive",0); neg=dist.get("negatif",0); neu=dist.get("neutre",0) lines.append(f"- **Répartition émotions** : positive {pos}/{tot}, neutre {neu}/{tot}, négative {neg}/{tot}") if not themes_df.empty: lines.append("\n## Thèmes les plus cités") for th,m in themes_df.head(5)[["theme","total_mentions"]].values.tolist(): lines.append(f"- **{th}** : {m} occurrence(s)") summary_md="\n".join(lines) if OPENAI_AVAILABLE: md = oa_summary(nps, dist, themes_df) if md: summary_md = md + "\n\n---\n" + summary_md # Exports tmpdir=tempfile.mkdtemp(prefix="nps_gradio_") enriched=os.path.join(tmpdir,"enriched_comments.csv") themes=os.path.join(tmpdir,"themes_stats.csv") summ=os.path.join(tmpdir,"summary.md") out_df.to_csv(enriched,index=False,encoding="utf-8-sig") themes_df.to_csv(themes,index=False,encoding="utf-8-sig") with open(summ,"w",encoding="utf-8") as f: f.write(summary_md) zip_path=os.path.join(tmpdir,"nps_outputs.zip") with zipfile.ZipFile(zip_path,"w",zipfile.ZIP_DEFLATED) as z: z.write(enriched,arcname="enriched_comments.csv") z.write(themes,arcname="themes_stats.csv") z.write(summ,arcname="summary.md") # Panneaux & Graphes def make_panels(dfT: pd.DataFrame): if dfT is None or dfT.empty: return "—","—","—" pos_top = dfT.sort_values(["verbatims_pos","total_mentions"], ascending=[False,False]).head(4) neg_top = dfT.sort_values(["verbatims_neg","total_mentions"], ascending=[False,False]).head(4) def bullets(df, col, label): lines=[f"**{label}**"] for _, r in df.iterrows(): lines.append(f"- **{r['theme']}** — {int(r[col])} verbatims") return "\n".join(lines) ench_md = bullets(pos_top, "verbatims_pos", "Points d’enchantement") irr_md = bullets(neg_top, "verbatims_neg", "Irritants") RECO_RULES = { "Délais & Suivi dossier": "Réduire les délais (SLA), suivi proactif.", "Cotisations / Facturation": "Clarifier factures, alerter anomalies.", "Espace client / App / Connexion": "Corriger login/MDP, QA navigateurs.", "Support / Conseiller": "Améliorer joignabilité, scripts, rappel auto.", "Communication / Transparence": "Notifications étapes clés, messages clairs.", "Sinistres / Indemnisation": "Transparence délais + suivi dossier.", } rec_lines=["**Recommandations**"] for _, r in neg_top.iterrows(): rec_lines.append(f"- **{r['theme']}** — {RECO_RULES.get(r['theme'],'Plan d’action dédié')}") return ench_md, irr_md, "\n".join(rec_lines) ench_md, irr_md, reco_md = make_panels(themes_df) fig_gauge = fig_nps_gauge(nps) fig_emots = fig_sentiment_bar(dist) k = max(1, int(TOP_K)) fig_top = fig_top_themes(themes_df, k) fig_bal = fig_theme_balance(themes_df, k) return (summary_md, themes_df.head(100), out_df.head(200), [enriched, themes, summ, zip_path], ench_md, irr_md, reco_md, fig_gauge, fig_emots, fig_top, fig_bal) # ====================== UI ====================== apply_plotly_theme() with gr.Blocks(title="Verbatify, révélez la voix de vos assurés, simplement...", css=VB_CSS) as demo: # Header gr.HTML( "
" f"{LOGO_SVG}" "
Verbatify, révélez la voix de vos assurés, simplement...
" "
Émotions • Thématiques • Occurrences • Synthèse • NPS
" "
" ) # Entrée minimale + bouton with gr.Row(): pasted = gr.Textbox( label="Verbatims (un par ligne)", lines=10, placeholder="Exemple :\nRemboursement rapide, télétransmission OK | 10\nImpossible de joindre un conseiller | 3\nEspace client : bug à la connexion | 4", scale=4 ) # cellule dédiée au bouton, qu'on va centrer avec le CSS with gr.Column(elem_id="vb-cta-cell", scale=1): run = gr.Button("Lancer l'analyse", elem_classes=["vb-cta"]) # Panneaux with gr.Row(): ench_panel=gr.Markdown() irr_panel=gr.Markdown() reco_panel=gr.Markdown() # Résultats + téléchargements summary=gr.Markdown(label="Synthèse NPS & ressentis clients") themes_table=gr.Dataframe(label="Thèmes — statistiques") enriched_table=gr.Dataframe(label="Verbatims enrichis (aperçu)") files_out=gr.Files(label="Téléchargements (CSV & ZIP)") # Graphes with gr.Row(): plot_nps = gr.Plot(label="NPS — Jauge") plot_sent= gr.Plot(label="Répartition des émotions") with gr.Row(): plot_top = gr.Plot(label="Top thèmes — occurrences") plot_bal = gr.Plot(label="Top thèmes — balance Pos/Neg") # Lancer run.click( analyze_text, inputs=[pasted], outputs=[summary, themes_table, enriched_table, files_out, ench_panel, irr_panel, reco_panel, plot_nps, plot_sent, plot_top, plot_bal] ) gr.HTML( '' ) if __name__ == "__main__": demo.launch(share=False, show_api=False)