import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import os from langchain import PromptTemplate from langchain import LLMChain from langchain_together import Together import re import pdfplumber # Set the API key with double quotes os.environ['TOGETHER_API_KEY'] = "5653bbfbaf1f7c1438206f18e5dfc2f5992b8f0b6aa9796b0131ea454648ccde" text = "" max_pages = 16 with pdfplumber.open("Ad_Mod_Daily_Sales.pdf") as pdf: for i, page in enumerate(pdf.pages): if i >= max_pages: break text += page.extract_text() + "\n" def Bot(Questions): chat_template = """ Based on the provided context: {text} Please answer the following question: {Questions} Only provide answers that are directly related to the context. If the question is unrelated, respond with "I don't know". """ prompt = PromptTemplate( input_variables=['text', 'Questions'], template=chat_template ) llama3 = Together(model="meta-llama/Llama-3-70b-chat-hf", max_tokens=250) Generated_chat = LLMChain(llm=llama3, prompt=prompt) try: response = Generated_chat.invoke({ "text": text, "Questions": Questions }) response_text = response['text'] response_text = response_text.replace("assistant", "") # Post-processing to handle repeated words and ensure completeness words = response_text.split() seen = set() filtered_words = [word for word in words if word.lower() not in seen and not seen.add(word.lower())] response_text = ' '.join(filtered_words) response_text = response_text.strip() # Ensuring no extra spaces at the ends if not response_text.endswith('.'): response_text += '.' return response_text except Exception as e: return f"Error in generating response: {e}" def ChatBot(Questions): greetings = ["hi", "hello", "hey", "greetings", "what's up", "howdy"] # Check if the input question is a greeting question_lower = Questions.lower().strip() if question_lower in greetings or any(question_lower.startswith(greeting) for greeting in greetings): return "Hello! How can I assist you with the document today?" else: response=Bot(Questions) return response.translate(str.maketrans('', '', '\n')) # text_embedding = model.encode(text, convert_to_tensor=True) # statement_embedding = model.encode(statement, convert_to_tensor=True) # # Compute the cosine similarity between the embeddings # similarity = util.pytorch_cos_sim(text_embedding, statement_embedding) # # Print the similarity score # print(f"Cosine similarity: {similarity.item()}") # # Define a threshold for considering the statement as related # threshold = 0.7 # if similarity.item() > threshold: # response=Bot(Questions) # return response # else: # response="The statement is not related to the text." # return response iface = gr.Interface(fn=ChatBot, inputs="text", outputs="text", title="Chatbot") iface.launch(debug=True)