Spaces:
Sleeping
Sleeping
Upload 11 files
Browse files- app.py +94 -4
- requirements.txt +3 -1
app.py
CHANGED
|
@@ -2,12 +2,18 @@ from dotenv import load_dotenv
|
|
| 2 |
import streamlit as st
|
| 3 |
import os
|
| 4 |
import google.generativeai as genai
|
|
|
|
|
|
|
| 5 |
from ads_formulas import ads_formulas # Import the ads formulas
|
| 6 |
from style import styles
|
| 7 |
from prompts import create_fb_ad_instruction
|
| 8 |
from emotional_angles import emotional_angles
|
| 9 |
from copywriter_personas import copywriter_personas
|
| 10 |
from ad_objectives import ad_objectives # Import ad objectives
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# Cargar las variables de entorno
|
| 13 |
load_dotenv()
|
|
@@ -24,7 +30,7 @@ def get_model(temperature):
|
|
| 24 |
return genai.GenerativeModel('gemini-2.0-flash', generation_config=generation_config)
|
| 25 |
|
| 26 |
# Function to generate Facebook ads
|
| 27 |
-
def generate_fb_ad(target_audience, product, temperature, selected_formula, selected_angle, selected_persona, story_prompt="", ad_objective=None):
|
| 28 |
if not target_audience or not product:
|
| 29 |
return "Por favor, completa todos los campos requeridos."
|
| 30 |
|
|
@@ -35,6 +41,8 @@ def generate_fb_ad(target_audience, product, temperature, selected_formula, sele
|
|
| 35 |
emphasized_story_prompt = story_prompt.strip()
|
| 36 |
|
| 37 |
model = get_model(temperature)
|
|
|
|
|
|
|
| 38 |
ad_instruction = create_fb_ad_instruction(
|
| 39 |
target_audience,
|
| 40 |
product,
|
|
@@ -46,13 +54,22 @@ def generate_fb_ad(target_audience, product, temperature, selected_formula, sele
|
|
| 46 |
story_prompt=emphasized_story_prompt # Usar el tema enfatizado
|
| 47 |
)
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
# Si hay un tema específico, ajustar la temperatura para mayor coherencia
|
| 50 |
effective_temperature = temperature
|
| 51 |
if story_prompt and story_prompt.strip():
|
| 52 |
# Reducir ligeramente la temperatura para mantener más enfoque en el tema
|
| 53 |
effective_temperature = max(0.1, temperature * 0.9)
|
| 54 |
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
return response.parts[0].text if response and response.parts else "Error generating content."
|
| 57 |
|
| 58 |
# Configurar la interfaz de usuario con Streamlit
|
|
@@ -84,7 +101,78 @@ with col1:
|
|
| 84 |
ad_product = st.text_input("¿Qué producto tienes en mente?", placeholder="Ejemplo: Curso de gestión del tiempo")
|
| 85 |
input_prompt = st.text_area("Escribe de qué quieres que trate la historia:", placeholder="Escribe aquí tu idea...")
|
| 86 |
|
| 87 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
submit_ad = st.button("GENERAR ANUNCIO")
|
| 89 |
|
| 90 |
with st.expander("Opciones avanzadas"):
|
|
@@ -147,7 +235,9 @@ if submit_ad:
|
|
| 147 |
emotional_angle,
|
| 148 |
ad_persona,
|
| 149 |
input_prompt, # Pass the new story prompt
|
| 150 |
-
selected_objective
|
|
|
|
|
|
|
| 151 |
)
|
| 152 |
|
| 153 |
if not isinstance(generated_ad, str):
|
|
|
|
| 2 |
import streamlit as st
|
| 3 |
import os
|
| 4 |
import google.generativeai as genai
|
| 5 |
+
import time
|
| 6 |
+
import datetime
|
| 7 |
from ads_formulas import ads_formulas # Import the ads formulas
|
| 8 |
from style import styles
|
| 9 |
from prompts import create_fb_ad_instruction
|
| 10 |
from emotional_angles import emotional_angles
|
| 11 |
from copywriter_personas import copywriter_personas
|
| 12 |
from ad_objectives import ad_objectives # Import ad objectives
|
| 13 |
+
import PyPDF2
|
| 14 |
+
import docx
|
| 15 |
+
from PIL import Image
|
| 16 |
+
import io
|
| 17 |
|
| 18 |
# Cargar las variables de entorno
|
| 19 |
load_dotenv()
|
|
|
|
| 30 |
return genai.GenerativeModel('gemini-2.0-flash', generation_config=generation_config)
|
| 31 |
|
| 32 |
# Function to generate Facebook ads
|
| 33 |
+
def generate_fb_ad(target_audience, product, temperature, selected_formula, selected_angle, selected_persona, story_prompt="", ad_objective=None, file_content="", image_parts=None):
|
| 34 |
if not target_audience or not product:
|
| 35 |
return "Por favor, completa todos los campos requeridos."
|
| 36 |
|
|
|
|
| 41 |
emphasized_story_prompt = story_prompt.strip()
|
| 42 |
|
| 43 |
model = get_model(temperature)
|
| 44 |
+
|
| 45 |
+
# Crear la instrucción base
|
| 46 |
ad_instruction = create_fb_ad_instruction(
|
| 47 |
target_audience,
|
| 48 |
product,
|
|
|
|
| 54 |
story_prompt=emphasized_story_prompt # Usar el tema enfatizado
|
| 55 |
)
|
| 56 |
|
| 57 |
+
# Si hay contenido de archivo, añadirlo a la instrucción
|
| 58 |
+
if file_content:
|
| 59 |
+
ad_instruction += f"\n\nAdemás, utiliza la siguiente información como referencia para crear el anuncio:\n\n{file_content[:2000]}"
|
| 60 |
+
|
| 61 |
# Si hay un tema específico, ajustar la temperatura para mayor coherencia
|
| 62 |
effective_temperature = temperature
|
| 63 |
if story_prompt and story_prompt.strip():
|
| 64 |
# Reducir ligeramente la temperatura para mantener más enfoque en el tema
|
| 65 |
effective_temperature = max(0.1, temperature * 0.9)
|
| 66 |
|
| 67 |
+
# Generar el contenido con o sin imagen
|
| 68 |
+
if image_parts:
|
| 69 |
+
response = model.generate_content([ad_instruction, image_parts], generation_config={"temperature": effective_temperature})
|
| 70 |
+
else:
|
| 71 |
+
response = model.generate_content([ad_instruction], generation_config={"temperature": effective_temperature})
|
| 72 |
+
|
| 73 |
return response.parts[0].text if response and response.parts else "Error generating content."
|
| 74 |
|
| 75 |
# Configurar la interfaz de usuario con Streamlit
|
|
|
|
| 101 |
ad_product = st.text_input("¿Qué producto tienes en mente?", placeholder="Ejemplo: Curso de gestión del tiempo")
|
| 102 |
input_prompt = st.text_area("Escribe de qué quieres que trate la historia:", placeholder="Escribe aquí tu idea...")
|
| 103 |
|
| 104 |
+
# Añadir cargador de archivos
|
| 105 |
+
uploaded_file = st.file_uploader("📄 Sube un archivo o imagen de referencia",
|
| 106 |
+
type=['txt', 'pdf', 'docx', 'jpg', 'jpeg', 'png'])
|
| 107 |
+
|
| 108 |
+
file_content = ""
|
| 109 |
+
is_image = False
|
| 110 |
+
image_parts = None
|
| 111 |
+
|
| 112 |
+
if uploaded_file is not None:
|
| 113 |
+
file_type = uploaded_file.name.split('.')[-1].lower()
|
| 114 |
+
|
| 115 |
+
# Manejar archivos de texto
|
| 116 |
+
if file_type in ['txt', 'pdf', 'docx']:
|
| 117 |
+
if file_type == 'txt':
|
| 118 |
+
try:
|
| 119 |
+
file_content = uploaded_file.read().decode('utf-8')
|
| 120 |
+
st.success(f"Archivo TXT cargado: {uploaded_file.name}")
|
| 121 |
+
except Exception as e:
|
| 122 |
+
st.error(f"Error al leer el archivo TXT: {str(e)}")
|
| 123 |
+
file_content = ""
|
| 124 |
+
|
| 125 |
+
elif file_type == 'pdf':
|
| 126 |
+
try:
|
| 127 |
+
import PyPDF2
|
| 128 |
+
pdf_reader = PyPDF2.PdfReader(uploaded_file)
|
| 129 |
+
file_content = ""
|
| 130 |
+
for page in pdf_reader.pages:
|
| 131 |
+
file_content += page.extract_text() + "\n"
|
| 132 |
+
st.success(f"Archivo PDF cargado: {uploaded_file.name}")
|
| 133 |
+
except Exception as e:
|
| 134 |
+
st.error(f"Error al leer el archivo PDF: {str(e)}")
|
| 135 |
+
file_content = ""
|
| 136 |
+
|
| 137 |
+
elif file_type == 'docx':
|
| 138 |
+
try:
|
| 139 |
+
import docx
|
| 140 |
+
doc = docx.Document(uploaded_file)
|
| 141 |
+
file_content = "\n".join([para.text for para in doc.paragraphs])
|
| 142 |
+
st.success(f"Archivo DOCX cargado: {uploaded_file.name}")
|
| 143 |
+
except Exception as e:
|
| 144 |
+
st.error(f"Error al leer el archivo DOCX: {str(e)}")
|
| 145 |
+
file_content = ""
|
| 146 |
+
|
| 147 |
+
# Mostrar una vista previa del contenido
|
| 148 |
+
if file_content:
|
| 149 |
+
with st.expander("Vista previa del contenido"):
|
| 150 |
+
st.text(file_content[:500] + "..." if len(file_content) > 500 else file_content)
|
| 151 |
+
|
| 152 |
+
# Manejar archivos de imagen
|
| 153 |
+
elif file_type in ['jpg', 'jpeg', 'png']:
|
| 154 |
+
try:
|
| 155 |
+
from PIL import Image
|
| 156 |
+
image = Image.open(uploaded_file)
|
| 157 |
+
|
| 158 |
+
# Mostrar la imagen
|
| 159 |
+
with st.expander("Vista previa de la imagen"):
|
| 160 |
+
st.image(image, caption="Imagen cargada", use_container_width=True)
|
| 161 |
+
|
| 162 |
+
image_bytes = uploaded_file.getvalue()
|
| 163 |
+
image_parts = [
|
| 164 |
+
{
|
| 165 |
+
"mime_type": uploaded_file.type,
|
| 166 |
+
"data": image_bytes
|
| 167 |
+
}
|
| 168 |
+
]
|
| 169 |
+
is_image = True
|
| 170 |
+
st.success(f"Imagen cargada: {uploaded_file.name}")
|
| 171 |
+
except Exception as e:
|
| 172 |
+
st.error(f"Error al procesar la imagen: {str(e)}")
|
| 173 |
+
is_image = False
|
| 174 |
+
|
| 175 |
+
# Mover el botón aquí, después del cargador de archivos
|
| 176 |
submit_ad = st.button("GENERAR ANUNCIO")
|
| 177 |
|
| 178 |
with st.expander("Opciones avanzadas"):
|
|
|
|
| 235 |
emotional_angle,
|
| 236 |
ad_persona,
|
| 237 |
input_prompt, # Pass the new story prompt
|
| 238 |
+
selected_objective,
|
| 239 |
+
file_content if 'file_content' in locals() and file_content else "",
|
| 240 |
+
image_parts if 'image_parts' in locals() and is_image else None
|
| 241 |
)
|
| 242 |
|
| 243 |
if not isinstance(generated_ad, str):
|
requirements.txt
CHANGED
|
@@ -5,4 +5,6 @@ langchain
|
|
| 5 |
PyPDF2
|
| 6 |
chromadb
|
| 7 |
pdf2image
|
| 8 |
-
faiss-cpu
|
|
|
|
|
|
|
|
|
| 5 |
PyPDF2
|
| 6 |
chromadb
|
| 7 |
pdf2image
|
| 8 |
+
faiss-cpu
|
| 9 |
+
python-docx
|
| 10 |
+
Pillow
|