import pickle import os import gradio as gr import gradio as gr import pandas as pd from sentence_transformers import SentenceTransformer, util def encode_column(model, filename, col_name): df = pd.read_csv(filename) df["embedding"] = list(model.encode(df[col_name])) return df def item_level_ccr(data_encoded_df, questionnaire_encoded_df): q_embeddings = questionnaire_encoded_df.embedding d_embeddings = data_encoded_df.embedding similarities = util.pytorch_cos_sim(d_embeddings, q_embeddings) for i in range(1,len(questionnaire_encoded_df)+1): data_encoded_df["sim_item_{}".format(i)] = similarities[:, i-1] return data_encoded_df # encoding questionnaire def ccr_wrapper(data_file, data_col, q_file, q_col, model='all-MiniLM-L6-v2'): """ Returns a Dataframe that is the content of data_file with one additional column for CCR value per question Parameters: data_file (str): path to the file containing user text data_col (str): column that includes user text q_file (str): path to the file containing questionnaires q_col (str): column that includes questions model (str): name of the SBERT model to use for CCR see https://www.sbert.net/docs/pretrained_models.html for full list """ try: model = SentenceTransformer(model) except: print("model name was not included, using all-MiniLM-L6-v2") model = SentenceTransformer('all-MiniLM-L6-v2') questionnaire_filename = q_file.name data_filename = data_file.name q_encoded_df = encode_column(model, questionnaire_filename, q_col) data_encoded_df = encode_column(model, data_filename, data_col) ccr_df = item_level_ccr(data_encoded_df, q_encoded_df) ccr_df.to_csv("ccr_results.csv") return "ccr_results.csv" def read_dataframe(data_file, data_col, q_file, q_col): # df = pd.read_csv(data_file.name) return data_file.name def single_text_ccr(text, question): model = SentenceTransformer('all-MiniLM-L6-v2') text_embedding = model.encode(text) question_embedding = model.encode(question) return round(util.pytorch_cos_sim(text_embedding, question_embedding).item(),3) with gr.Blocks() as demo: # gr.Markdown('This is the first page for CCR, info goes here!') gr.Markdown("""

Contextual Construct Representations

Ali Omrani and Mohammad Atari

""") gr.Markdown("""

Play around with your items!

""") with gr.Row(): user_txt = gr.Textbox(label="Input Text", placeholder="Enter your desired text here ...") question = gr.Textbox(label="Question", placeholder="Enter the question text here ...") submit2 = gr.Button("Get CCR for this Text!") submit2.click(single_text_ccr, inputs=[user_txt, question], outputs=gr.Textbox(label="CCR Value")) gr.Markdown("""

Or process a whole file!

""") with gr.Row(): model_name = gr.Dropdown(label="Choose the Model", choices=["all-mpnet-base-v2","multi-qa-mpnet-base-dot-v1", "distiluse-base-multilingual-cased-v2", "distiluse-base-multilingual-cased-v1", "paraphrase-MiniLM-L3-v2", "paraphrase-multilingual-MiniLM-L12-v2", "paraphrase-albert-small-v2", "paraphrase-multilingual-mpnet-base-v2", "multi-qa-MiniLM-L6-cos-v1", "all-MiniLM-L6-v2", "multi-qa-distilbert-cos-v1", "all-MiniLM-L12-v2", "all-distilroberta-v1"]) with gr.Row(): with gr.Column(): user_data = gr.File(label="Participant Data File") text_col = gr.Textbox(label="Text Column", placeholder="text column ... ") with gr.Column(): questionnaire_data = gr.File(label="Questionnaire File") q_col = gr.Textbox(label="Question Column", placeholder="questionnaire column ... ") submit = gr.Button("Get CCR!") outputs=gr.File() submit.click(ccr_wrapper, inputs=[user_data, text_col,questionnaire_data,q_col, model_name], outputs=[outputs]) demo.launch(share=True)