import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModel # Load Med42 med42_model_name = "m42-health/med42-70b" med42_tokenizer = AutoTokenizer.from_pretrained(med42_model_name) med42_model = AutoModelForCausalLM.from_pretrained(med42_model_name) # Load ClinicalBERT clinicalbert_model_name = "medicalai/ClinicalBERT" clinicalbert_tokenizer = AutoTokenizer.from_pretrained(clinicalbert_model_name) clinicalbert_model = AutoModel.from_pretrained(clinicalbert_model_name) # Define functions def med42_qa(question): inputs = med42_tokenizer(question, return_tensors="pt") outputs = med42_model.generate(**inputs, max_length=200) return med42_tokenizer.decode(outputs[0], skip_special_tokens=True) def analyze_ehr(text): inputs = clinicalbert_tokenizer(text, return_tensors="pt") embeddings = clinicalbert_model(**inputs).last_hidden_state return f"ClinicalBERT generated embeddings with shape: {embeddings.shape}" # Combine Gradio Interface def combined_tool(input_text): qa_result = med42_qa(input_text) ehr_result = analyze_ehr(input_text) return f"Med42 Answer:\n{qa_result}\n\nClinicalBERT Analysis:\n{ehr_result}" # Build Gradio UI interface = gr.Interface( fn=combined_tool, inputs="text", outputs="text", title="Healthcare AI Tool", description="Use Med42 for medical Q&A and ClinicalBERT for EHR analysis." ) if __name__ == "__main__": interface.launch() import os from transformers import AutoTokenizer, AutoModelForCausalLM # Load authentication token from environment variables hf_token = os.getenv("HF_AUTH_TOKEN") # Load the Med42 model with the token med42_model_name = "m42-health/med42-70b" med42_tokenizer = AutoTokenizer.from_pretrained(med42_model_name, use_auth_token=hf_token) med42_model = AutoModelForCausalLM.from_pretrained(med42_model_name, use_auth_token=hf_token) import os from transformers import AutoTokenizer, AutoModelForCausalLM # Load the token from the environment hf_token = os.getenv("HF_AUTH_TOKEN") # Load Med42 model and tokenizer med42_model_name = "m42-health/med42-70b" med42_tokenizer = AutoTokenizer.from_pretrained(med42_model_name, use_auth_token=hf_token) med42_model = AutoModelForCausalLM.from_pretrained(med42_model_name, use_auth_token=hf_token)