import gradio as gr import torch from diffusers import DiffusionPipeline pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") pipe = pipe.to("mps") # Recommended if your computer has < 64 GB of RAM pipe.enable_attention_slicing() prompt = "a photo of an astronaut riding a horse on mars" #image = pipe(prompt).images[0] text0 = 'black fluffy gorgeous dangerous cat animal creature, large orange eyes, big fluffy ears, piercing gaze, full moon, dark ambiance, best quality, extremely detailed' def generation(text): image = pipe(text).images[0] return image demo = gr.Blocks() title = '# 3D print failures detection App' description = 'App for detect errors in the 3D printing' with demo: gr.Markdown(title) gr.Markdown(description) with gr.Row(): img_input = gr.Textbox ( label="Text 1",info="Initial text",lines=5,value=text0) button = gr.Button(value="Generate") with gr.Row(): img_output= gr.Image() button.click( generation, inputs=img_input, outputs=[img_output]) if __name__ == "__main__": demo.launch()