
Development of a module for mission analysis

for a gradient-based aerodynamic shape

optimization process

Technische Universität Braunschweig
Department of Mechanical Engineering

Chair for Overall Aircraft Design

Studienarbeit

Student research project

written by

Javed Butt
5027847

born on 20.05.1996 in Gujrat

Submission date: 19.08.2021
Examiner : Prof. Dr.-Ing. Stefan Görtz
Supervisor : M.Sc. Andrei Merle (M.Sc.)

Acknowledgments

All praise and thanks to the ONE to Whom all praise, thanks and gratitude belongs.

My special thanks goes to Andrei Merle, who was the supervisor of this work. He showed
his knowledge in a modest way, supported me actively in getting this work completed by
helping me solving equations, reviewing my work and providing beneficial tricks and tips.
Especially, when it came to solving equations, I really appreciated his help. Thank you for
your time and effort you spend on this work Andrei Merle.

Also, Professor Stefan Görtz - At each end of our conversations, he would ask me to call
him, if any problems or questions would arise - thank you for your support Professor Görtz.

2

Declaration of independent authorship

I hereby declare that the present work, the Studienarbeit, is solely and independently done
by myself in all aspects, such as developments, code implementations, and writing of report.
In addition, I confirm that I did not use any tools, materials or sources other than those
explicitly specified.

Full name: Javed Butt

Date and place: 19.08.2021, Braunschweig

Signature:

3

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 State of the art . 7
1.3 Introducing missioninformer . 8

1.3.1 Workflow . 10

2 Methodology 13
2.1 Atmospheric conversions . 13
2.2 Cruise and mission fuel mass . 13
2.3 Method for solving the ODE . 16
2.4 Mission fuel mass iteration . 18
2.5 Surrogate models . 20

2.5.1 Kriging models . 23
2.5.2 RBF models . 24
2.5.3 Investigations on different surrogate models 25

2.6 Shape Gradients . 28
2.6.1 Analytical attempt . 28
2.6.2 Numerical approach . 36

3 Results 39
3.1 Solving the ODE . 39
3.2 Conducting a step-size-study . 45
3.3 Surrogate models . 48
3.4 Evaluating different surrogate models . 56

3.4.1 Kriging and TPS accuracy . 63

4 Discussion 65

5 Conclusions and outlook 67

4

1 Introduction

This work is written for the Technische Universiät Braunschweig in a cooperation with the
German Aerospace Center (DLR). It is the result of research topic defined by my supervi-
sor Andrei Merle and Prof. Stefan Görtz, both working for the DLR. The overall goal, in
very brief terms, is to calculate the fuel consumption and its gradients with respect to later
introduced shape parameters for one or multiple individual flight missions. The developed
tool for that purpose is called missioninformer. The workflow of the missioninformer can be
explained with figure 1.1. Missioninformer can be treated as a black box, which makes its
implementation into existing analysis and optimization processes easier. It receives an input,
the so-called mission input, which contains descriptive information about a flight mission,
e.g. payload, cruise range, flight Mach number (a more detailed explanation will be given in
section 1.1) and aerodynamical data. With these inputs missioninformer provides the user
with 2 outputs. The first one is a state value, it is the amount of fuel in kg which is required
for the mission. The second output are the gradients of the fuel for the mission with respect
to arbitrary aircraft shape parameters.

1.1 Motivation

Aviation has become an indispensable part of global economy. Its importance is evident in
the private sector, where it is connecting destinations worldwide and in the business sector,
where goods are transported and business trips are undertaken. Since an aircraft burns fuel
and thus emits carbon dioxide (CO2), nitrogen oxide (NOx) and sulphur dioxide (SO2) its
impact on the environment is significant and cannot be neglected. Emissions are so high that
the European commission has formulated a document called Flightpath 2050, where it defines
two of its goals to be reduction of CO2 and NOx emission by 75% per passenger kilometer
and 90%, respectively. Currently, commercial aviation is responsible for around 3.5 % of the
global carbon dioxide and nitrogen oxide emission [17] and it can be assumed that in an
increasingly globalized world the demand for fast and convenient mobility will not diminish.
Industry and governments around the world realized that taking active steps towards a cleaner
flying are essential for saving the planet earth. In 2010, the international Civil Aviation Or-
ganization (ICAO) formulated industry-wide goals for reducing carbon emissions. These
goals can be summarized by 2 main objectives, to establish carbon-neutral growth beyond
year 2020 and to further reduce carbon emissions to half of the current level by the year 2050.

One simple way of reducing the overall carbon emissions already set to practice is the appli-
cation of single-engine taxiing. With a single operating engine the fuel emissions are reduced
only for the time in which the taxiing and waiting are carried out. Considering a whole flight
mission, taxiing and waiting represents only a small fraction of the mission. Thus, this is not
enough. Other techniques to reduce fuel consumption already in use are flying at an optimal
cruise speed or using more environmental-friendly handbook trajectories. Methods which
still acquire much exploration, however, can be assumed to play a main part in reducing

5

1.1. MOTIVATION 6

fuel consumption. These are overall new aircraft configurations, e.g. blended wing body and
applying technologies like laminar flow control, boundary layer ingestion, ultra-high bypass
ratio engines, more and all electric aircraft. The possibility to combine multiple technolo-
gies is given and is expected to lead to best results. The proposed missioninformer is not
restricted to any aircraft configuration nor to any new applied technological advancements.

The demand for more environmental-friendly aircraft is becoming steadily louder. Fur-
thermore, fuel price has increased and is forecasted to increase in the future. Among others,
one of the main objectives of the DLR’s institute Aerodynamics and Flow Technology is to
fulfill the described demands. Therefore, several optimization process were developed here
to find structural, aerodynamical and engine optimized aircraft designs, details can be found
in [13, 10]. The fuel consumption is targeted as the objective function inside an optimiza-
tion process. The big advantage of such an optimization would result in reducing the CO2
emissions and thus pleasing the environmental demands. The missioninformer is written in a
modular manner as mentioned earlier in this chapter. Therefore, it can be easily implemented
into the DLR’s multi-disciplinary, -point and -objective optimization frameworks. Also, the
user is enabled to define his own mission or multiple missions. Therefore, this feature could
be used to enhance the already existing multi-point capabilities for the optimization. The
importance of a multi-mission-optimization becomes visible, when thinking about an aircraft,
which is used for a wide variety of missions, e.g. for different kinds of ranges, flight altitudes,
speeds and payloads. In case of a single mission optimization, the given flight parameter will
be suited optimally. However, a small change in these conditions could result into unbearable
consequences of the fuel consumption. In practice, airlines want to buy aircrafts, which can
be used for more than just one mission. A multi-mission optimized aircraft performs not as
good for each condition, however it will cover a variety of missions and conditions within
reason. The missioninformer, however, is not only suited for multi-point optimization, rather
the enhanced multi-mission optimization. For instance in the previously mentioned processes
masses for which the aircraft is trimmed are defined. Masses are defined through the method
of multi-points, i.e. these are only frozen and discontinuous discrete aerodynamic states for
which an optimization is carried out. In case of the multi-mission capable missioninformer,
the masses are defined continuously, which comes closer to the reality of flying and thus
consuming fuel. Furthermore, the missioninformer takes the snowball mass effect, which is
described in section 2.4 into account. Also, since the input data is given by the aerodynamic
output of DLR’ analysis and optimization workflow FSAerOpt [25] involving the flow solver
TAU, each mission fuel mass computation gets aerodynamical data for a fully trimmed state.

With this introduction the main 8 tasks for developing the missionionformer from scratch
shall be mentioned:

1. Literature review on mission analysis and review of Breguet’s range formula.

2. Familiarization with the gradient-based optimization process

3. Conception of an interpolation module for mission analysis

4. Implementation of the Python module

5. Derivation of the module according to the optimization parameters

6. Verification of the derivation in case the derivation is done by complex-step or analyti-
cally

1.2. STATE OF THE ART 7

7. Interface for a gradient-based optimization process

8. Identification of a best practice

As far it is possible, each task will be elaborated in this article. Since the tasks required much
coding, it is important to mention the used programming language and the dependencies.
As for the programming language, Python 2 and Python 3 were chosen. For the libraries
Matplotlib, Scipy, NumPy and DLR’s own Python library SMARTy are deployed. For local
coding a Linux workstation provided by the DLR with the following hardware configuration
was used: CPU: Intel(R) Xeon(R) CPU E3-1270 v3 @3.50GHz and 32GB of RAM. Calcu-
lations were performed on the following high performance computer CARA: CPU: 2x AMD
EPYC 7601 (32 cores; 2,2 GHz) per node and 2168 nodes with 128 GB DDR4 (2666 MHz)
RAM. All calculations performed in this report used the 64 cores option. Some parts of mis-
sioninformer where NumPy is used, can be assumed to benefit from this option. However,
the missioninformer itself is not parallized.

1.2 State of the art

The idea to reduce the entire fuel consumption is not new and a summary of the available
methods is given in [6] and a more recent one in [15]. However, some works still shall be re-
cited. Flight Optimization System (FLOPS) is a modular approach allowing the user to select
appropriate modules for a given mission [23]. The aerodynamical data are generated by using
the Delta Method, which is an empirical drag prediction method [9]. FLOPS enables some
numerical optimization schemes, e.g. Davidon-Fletcher-Powell, Broyden-Fletcher-Goldfarb-
Shano and a Quadratic Extended Interior Penalty method [15]. The gradients are calculated
using finite differing, which is easy to apply, however an adequate derivation step size is re-
quired. The accuracy of gradients may not be sufficient and in case of a high number of design
variables parallelization should be considered in order to get gradients in an acceptable time
limit. Transport Aircraft System Optimization (TASOPT) is another well known tool for
mission analysis and optimization [12]. The benefit of the latter is that physics-based models,
rather than empirical data-tables are applied. Using data-tables results in interpolation could
result into not realizable designs. The physics for TASOPT is obtained mostly by low-order
models.

pyACDT is an aircraft conceptual design tool [26] containing a mission analysis compo-
nent. It uses the Breguet range equation and empirically obtained fuel fractions for each
flight mission segment. Liem et al. [19] take a similar approach, however with the advance-
ment, that fuel fractions are only going to be used for the startup, taxi and landing segments
of the mission. The fuel burn for climb, cruise and descent segments are calculated using
a range equation and the flight equilibrium equations. The different segments are linked
together such that the fuel weights at the end points of two neighboring segments must be
equal. Another well known tool for aircraft conceptual design is developed by Lissys Ltd and
is called PIANO. It is freely available, however, only for Windows and thus not compatible
for HPC-based optimization processes.

Probably the two most well known mission analysis tools are pyMission and SUAVE.
pyMission is developed by the authors of [15] and is now part of the openMDAO framework
[11]. It uses the flight equilibrium equations and a fuel burn rate equation. In order to
solve the fuel burn rate equation, which is an ODE, the amount of fuel carried at the end

1.3. INTRODUCING MISSIONINFORMER 8

of the mission is provided as the initial condition. The explicit Euler scheme starting from
the end of the mission is applied. Thus, marching backwards in distance to the start of the
mission is performed. For the rest of the mission fuel fractions are used. The gradients (total
derivatives) for the optimization performed are obtained through the adjoint method [21].
SUAVE is a conceptual aircraft design framework developed at Stanford University and can
be used for conventional and unconventional configurations. Tutorials as well as documen-
tation for SAVE ’s mission analysis tool can be found on their homepage [1]. In [18, 19, 20]
the mission analysis is applied by using surrogate models and mixture of experts. Different
kind of Kriging methods and RBFs (Radial Basis Function) are used to get interpolation
models for lift, drag and pitching moment coefficients from a four-dimensional input space
with variables, Mach number, angle of attack, flight altitude and tail rotation angle. For
startup, taxi, takeoff and landing fuel fractions are used. The fuel burn for climb, cruise and
descent segments are derived through numerical integration of a range equation. The results
of the paper can be summarized as follows: the adaptive sampling improves the accuracy
of surrogate models, the convergence was to be found slow in some cases, particularly when
modeling complex profiles. Traditional surrogate models (RBF and Kriging without mix-
ture of experts) performed well for the simpler lift and pitching moment coefficient (CL, CM)
profiles. Using a mixture of gradient enhanced Kriging (GEK) models to approximate drag
coefficients gave approximation errors of less than 5% with less than 150 samples, whereas
the adaptive sampling failed to converge when training a global model. Since the traditional
surrogate models approximate less complex behavior well, the authors of the papers recom-
mend applying traditional surrogate modelling instead of mixture of experts. Latter requires
much effort for its implementation. Finally, it is worth mentioning Dabas et al., who opti-
mize the pylon shape by coupling an aerodynamic optimization with a mission analysis tool
in order to propagate aerodynamic shape modifications to mission level [7]. The objective
function, however is not directly the amount of fuel burnt, but rather the Cash Operating
Costs (COC), which contain the burnt fuel as part of its weighted components.

1.3 Introducing missioninformer

In this section the overall processes and the functionalities of the proposed tool missionin-
former shall be presented in an abstract way, without intern solved equations at this stage.
It is a code written entirely in Python and makes use of the following libraries:

1. NumPy

2. SciPy

3. matplotlib

4. SMARTy (DLR’s own Python library)

5. re (regex)

Its main workflow can be described with the figure 1.1. It obtains two input files and
outputs the mass of total fuel which is required for the given mission and the gradients of the
mission fuel with respect to shape parameters. The mission input file is completely written
in Python and uses a regular dictionary, which is similar to a json file for storing purposes.
In order to define one mission in the mission input file, the following 3 groups of parameters
need to be set. The first group, named masses, contains weights:

1.3. INTRODUCING MISSIONINFORMER 9

1. maximal takeoff weight

2. maximal landing weight

3. operating empty weight

4. manufactures empty weights

5. maximum zero fuel weight

6. maximum fuel weight

7. design payload

8. maximum payload

Missioninformer

Missioninput Fuel burnt

Database Fuel burnt gradients

Figure 1.1: Broad overview: Workflow missioninformer

The second group, named flying parameters, consists of the cruise Mach number (Ma),
cruise altitude (h) and cruise range. The third group can be adjusted optionally by the user.
It allows to change the step size for the central differencing scheme, which will be discussed in
section 3.2 and define a weighting factor for each mission. The step size steers the accuracy
and reliability of the calculated gradients. In case, multiple missions shall be used, for each
mission a weighting factor must be given. Using multiple missions or adding missions is done
easily by copying the section of the parameters and redefining these with desired values. Each
new mission is summed to as one overall variable and needs to be passed as an argument to
the mission collection method.

The second input for the missioninformer is a database. It is required to generate surro-
gate, i.e. interpolation models for the state variables LoD, AoA (α), TSFC and their gradients
with respect to all shape parameters. LoD is called glide ratio, sometimes referred to per-
formance and defined as: LoD = CL

CD
= L

D , where the prefix C stands for coefficient and
the letter L and D are denoted as lift and drag, respectively. AoA is the angle of attack
and is commonly denoted with the greek letter α. TSFC is called the Thrust Specific Fuel
Consumption. In order to get an interpolation model for the state and gradient variables,
the database must contain values for those and their associated inputs Ma, h, mass. The mass
is the total mass at the related condition for which the aircraft is trimmed. In simpler terms,
considering figure 1.2, it can be observed that for combinations of Ma, h, mass their associated
known values for LoD are passed to an interpolation generator. Having obtained an interpo-
lation model, for any given set of Ma, h, mass the corresponding ˜LoD can be calculated. It
should clearly stated that, the closer the input set (Ma, h, mass) values are to those which
were used to generate the interpolation model, the better the prediction for the outcome

˜LoD, ˜AoA, ˜TSFC is. This means, if the given input set is highly out of the range of the train-
ing data, then an absurd extrapolation may occur. Figure 1.2 only depicts the workflow for
obtaining an interpolation model for LoD. However, analogously to the explained proceeding
by only replacing LoD with the desired output variable (AoA, TSFC and their gradients), 3 in-
terpolation models for the state variables and the remaining for the gradients can be achieved.

Since for each state variable (LoD, AoA, TSFC) the gradient with respect to each shape
parameter is required, the number of the interpolation models for the gradients is directly
connected to the number of the shape parameters. For example, having 126 shape parame-

1.3. INTRODUCING MISSIONINFORMER 10

ters, results in having 126 gradients for each state variable. Thus, 126 interpolation models
for the gradients of each state variable (LoD, AoA, TSFC) is necessary. In total, 126 ∗ 3 = 378
interpolation models only for the gradients are required.

Interpolation-Generator

Ma, h, mass Interpolationmodel

LoD

˜LoD

Figure 1.2: Exemplary interpolation model generation

Even though it might seem to be a heavy computation it is much faster compared to the
CFD calculation performed for each sample point to provide the state variables and their gra-
dients as training data. By using the interpolation approach the integration of the Breguet’s
range equation and the iteration of the mission fuel consumption becomes feasible although
using accurate but time-expensive CFD-based data. Furthermore, the tool scales nicely with
an increasing number of missions. However, the disadvantage is that the quality of the cal-
culations completely depends on the quality of the interpolation models. The interpolation
model itself depends on the accuracy of the provided input or training data as well as the
underlying method. Furthermore, the final goal is to use the missioninformer within a gra-
dient based optimization. The optimizing algorithm then heavily relies on the correctness
of the gradients. Additionally, gradient computations itself is a sensitive calculation to do.
With the importance of the correct chosen interpolation model in mind, in section 2.5 two
commonly used interpolation methods and several options are investigated.

The database containing the training samples is given by the output of DLR’s aerody-
namic analysis and optimization workflow FSAerOpt [25] involving the flow solver TAU. It is
calculated at trimmed states, however, trimming is not always feasible. In this case, mission-
informer automatically identifies the not trimmed values and does not include them into the
intern Python database. This feature is part of the modular skills of the missioninformer. It
thus enables an easy extension or insertion to an already existing workflow. This is reinforced
by the type of output, i.e. the total fuel burn and their gradients are stored as simple ASCII
text files and as NumPy arrays as well. In case of a Python based workflow, the NumPy
arrays can be loaded into the RAM (Random Access Memory) with one additional line of
code.

1.3.1 Workflow

A more detailed workflow is depicted in figure 1.3. Before discussing the figure, note that,
this is still a broad workflow, and it is supposed to provide only a general and not a deep
understanding. Among other, the cruise segment fuel equation, its derivative, its solution,
the used interpolation models and outer loops for example for the mass recalculations are
skipped for now. The detailed elaboration happens in chapter 2. The workflow 1.3 can be read
as follows: After having generated the database containing values for LoD, AoA, TSFC and
their gradients for a given set of inputs (Ma, h, mass), the mission input file can be adjusted
in order to define the flight mission. In case of a multi-mission definition one more step
regarding weighting is done, which is not depicted in the current workflow overview. With

1.3. INTRODUCING MISSIONINFORMER 11

these inputs missioninformer generates interpolation models for states and for gradients. In
order to get the mass of cruise segment fuel, its equation is solved. This equation requires the
state surrogate models to be called. In fact, the solving of state cruise segment fuel equation is
numerical and iterative and thus requires multiple function calls. In other words, solving the
cruise segment fuel equation once, invokes the surrogate models multiple times. The gradients
of the cruise segment fuel mass needs the state and the gradient interpolation models and
also invokes both models multiple times for one solution. Contrary to the generation of
the interpolation models, the invocation of the already calculated interpolation model is not
computationally costly. As mentioned, a deeper insight into the whole process is provided in
chapter 2. Once the state and gradients of the cruise segment fuel mass are calculated they
are written to hard disk as output.

1.3. INTRODUCING MISSIONINFORMER 12

m
is

si
on

in
p

u
t,

d
at

ab
as

e

m
is

si
on

in
fo

rm
er

L
oD

,A
oA

,T
S

F
C

L
o

D
d

p
,

d
α

d
p

,
d

T
S

F
C

d
p

st
at

e
in

tp
.

m
o

d
el

:
=

S̃
S̃

S̃

gr
ad

in
tp

.
m

o
d

el
:

=
G̃

G̃

fu
el

b
u

rn
st

at
e

eq
u

at
io

n
st

at
e

fu
el

b
u

rn
t

fu
el

b
u

rn
gr

ad
ie

n
t

eq
u

at
io

n
gr

ad
ie

n
ts

fu
el

b
u

rn
t

F
ig

u
re

1.
3:

S
ec

on
d

w
or

k
fl

ow
ov

er
v
ie

w
w

it
h

so
m

e
m

or
e

d
et

ai
ls

2 Methodology

In this chapter the employed equations, iterations and surrogate models for obtaining the state
and gradients of the burnt fuel and their theoretical background shall be given. Additionally,
the way of exploring methods, the reasons for having chosen the methods and the proceeding
to obtain solutions shall be explained. Furthermore, some workaround which was required
will be mentioned, e.g. in the upcoming section, where a small tool was developed in order
to get the atmospherical relationships.

2.1 Atmospheric conversions

One term inside the cruise fuel burn equation for the computation of the cruise segment fuel
is the speed of sound (a), which is not given by the user. However, what the user provides
is the altitude. By making use of one of the 3 common atmospheric models, ICAO-, US-
Standard Atmosphere or Norm Atmosphere DIN 5450/LN 9300, a relationship between pres-
sure, density and altitude (p, ρ, h), can be obtained. For our purposes, the ICAO-Standard
Atmosphere(ISA) and Norm atmosphere DIN 5450/LN 9300 were used within an altitude
range of 0-20 km (troposphere, lower stratosphere) and 20-32 km (upper stratosphere), re-
spectively. With the mentioned atmospheric models, altitude can be obtained by providing
pressure and density and vice versa. The missioninformer is capable of both and by following
the equation (2.1) the speed of sound (a) can be calculated. The heat capacity ratio is chosen
to be κ = 1.4. The reviewed process is depicted in figure 2.1

a =

√
κ

p

ρ
(2.1)

atmospheric norm

h ρ, p a√
κp
ρ

Figure 2.1: Atmospheric model and calculation of the speed of sound a

2.2 Cruise and mission fuel mass

In this section the derivation of the fuel burn equation for the cruise segment and the applied
solution method shall be explained. Since the missioninformer considers the whole mission
it will also be elaborated how the fuel masses for the remaining flight segments are obtained.

The derivation of the cruise segment fuel burn equation, which takes the form of an Or-
dinary Differential Equation (ODE) was provided by Ilic in an DLR-intern report [14]. For

13

2.2. CRUISE AND MISSION FUEL MASS 14

its derivation a constant altitude ()h = const.) is assumed. The cruise fuel burnt mass is
the mass of fuel, which is required for the airplane in order to reach or fly a given range.
The ODE is given in equation (2.2), where mfe is the burnt fuel mass, called fuel expended
accordingly to the original report [14]. The derivation is applied with respect to the range
ds, g , a, Ma, TSFC are denoted as the gravitational constant, the speed of sound, the Mach
number, and TSFC thrust specific fuel consumption, respectively.

dmfe

ds
=

g

a

1

Ma
TSFC (ms −mfe)

CL
CD

tan(θ) + 1
CL
CD

cos(AoA) + sin(AoA)
(2.2)

The fraction CL
CD

= L
D = LoD is called aerodynamical performance or glide ratio. AoA, θ, ms

are denoted as the angle of attack, flight path angle and cruise starting mass. The presented
equation is only one possible equation formulation, which can be employed to find the cruise
fuel burnt mass. In order to understand why this is so, its derivation shall be explained
briefly. In his report [14], the author starts with the equilibrium equations for steady flight.
By inserting them into each other and using equation transformations Ilic [14] comes to an
expression for the thrust as: T = f (m, g , LoD, AoA, θ). At this stage, the change of the fuel
mass with the distance traveled can be expressed in the following two ways:

dmfr

ds
= − TSFC

Ma a cos(θ)
T (2.3)

dmfe

ds
=

TSFC

Ma a cos(θ)
T (2.4)

Because the present total airplane mass m in the thrust expression T = f (m, g , LoD, AoA, θ)
can be expressed in two ways, two equations (ODEs) are possible as outcome to describe the
cruise fuel mass burnt. One is over the remaining fuel mass mfr

m = me + mfr , (2.5)

where me is the end mass or the mass right before landing. The second ODE is obtained by
using the expended fuel mass as:

m = ms −mfe , (2.6)

where ms is the cruise start mass or the mass just before cruise, after climb and acceler-
ation. According to common field specific knowledge, masses in aerospace can be further
distributed into detailed definitions, e.g. the takeoff mass can be further split up in operating
empty weight, payload and fuel weight. The operating empty weight itself can be split up
into airframe structure, propulsion group, airframe services and equipment, fixes equipment,
removable equipment, standard items, standard item variation and operational items [30].
Depending on the field of research and the desired level on accuracy the mass division can be
continued. However, the start mass ms from equation (2.6) contains the fuel weight for all
segments which are followed after climb and acceleration, cruise till taxi to parking. During
the flight this fuel mass is going to be reduced. With this background the two upcoming
equations can be looked at:

dmfr

ds
= −g

a

1

Ma
TSFC (me + mfr)

CL
CD

tan(θ) + 1
CL
CD

cos(AoA) + sin(AoA)
(2.7)

2.2. CRUISE AND MISSION FUEL MASS 15

dmfe

ds
=

g

a

1

Ma
TSFC (ms −mfe)

CL
CD

tan(θ) + 1
CL
CD

cos(AoA) + sin(AoA)
(2.8)

The difference between both comes through their derivation and thus the thought process
or undertaken assumptions. Equation (2.7) works with remaining fuel, the end mass me is
known, the fuel is calculated and with these the start mass ms is obtained, see equation (2.5).
This version lets the start mass be variable and requires the end mass as input. For equation
(2.8) the start mass ms is passed as an input argument, the expended or required fuel for
given cruise range is calculated.

Comparing the solution methods for the ODEs (2.7) and (2.8), the first is integrated back-
wards from cruise range end to zero. In other words, the initial condition is given with the
assumption that the remaining fuel at the end of the range equals zero mfr (R = Rcr ,max) = 0,
where R is denoted as the range. As mentioned in section 1.2, pyMission follows this ap-
proach for solving the ODE. In contrast, for defining the initial condition for equation (2.8)
the fuel mass at the cruise start or cruise range zero is provided. It can be understood,
that before the cruise even starts, no fuel in the cruise section is burnt. Note, the presented
ODEs are only valid for a cruise segment. Therefore, just at the start of the cruise segment,
neglecting other flight segments for this consideration, no fuel within the cruise segment is
burnt. Thus, the initial condition is formulated as equation (2.9). In this way, the ODE is
integrated forward from 0 to given range.

mfe(Rcr = 0) = 0 (2.9)

For this work the viewpoint of equation 2.8 considering fuel expended or burnt is going to
be applied in order to derive the upcoming solutions. Furthermore, the flight path angle is set
to zero θ = 0, see equation (2.10). Additionally, with the introduced relationship LoD = CL

CD

the final ODE can be formulated as equation (2.11)

dmfe

ds
=

g

a

1

Ma
TSFC (ms −mfe)

1
CL
CD

cos(AoA) + sin(AoA)
(2.10)

dmfe

ds
=

g

a

1

Ma
TSFC (ms −mfe)

1

LoD cos(AoA) + sin(AoA)
(2.11)

Before explaining the methodology for solving the chosen ODE (2.11), the inclusion of
the remaining flight segments shall be explained. In [27] fuel fractions, which are the ratio
of the aircraft total weight at the end of a flight segment to the weight at the start of
the same segment, were provided. The employed fuel fractions for the associated flight
segment are presented in the table 2.1. The obvious advantage of applying empirical based
fractions instead of solving physical based equations for flight segments other than cruise,
is the absence of time and thus money consuming modeling and solving of physical based
equations and as consequence a fast as well as easy implementation. Also, since only a
multiplication is performed, the output in Python is obtained within more than a feasible
time. The disadvantage however, is a loss of accuracy. Given the fact that most fuel is burnt
during the cruise segment, this seems a valid approach. For understanding, why the reserve
fuel fraction is set to 0.05, consider the equation (2.69) in the subsection 2.6.1.

2.3. METHOD FOR SOLVING THE ODE 16

Flight segment Fuel fraction

engine start 0.99
taxi to runway 0.99
takeoff 0.995
climb and acceleration 0.98
descent 0.99
landing 0.992
taxi to parking 0.99
reserve 0.05

Table 2.1: Fuel fractions for non cruise flight segments

2.3 Method for solving the ODE

The chosen ODE (2.11) can be solved numerically with different kind of solvers. However,
in order to have a possibility to validate the quality of the numerical solutions, some sim-
plifications shall be introduced. With these, it is possible to derive an analytical solution.
The variables LoD, AoA, TSFC , mfe are all functions of the present total mass, which is shown
in equation (2.12). Since the start point for the ODE to be valid is at cruise, the current
total mass is the cruise fuel starting mass m = ms . However, itself has a dependency on the
expended fuel mass, which will be elaborated in section 2.4 and makes an analytical explicit
solution hard to be derived. Additionally, no equations for LoD(ms), AoA(ms), TSFC (ms),
which would describe a relationship between the variable and the total present mass, are
given and therefore formulating an analytical solution becomes impossible.

dmfe(m)

ds
=

g

a

1

Ma
TSFC (m) (ms + mfe(m))

1

LoD(m) cos(AoA(m)) + sin(AoA(m))
(2.12)

At this point the mentioned simplifications for an analytical solution can be mentioned.
Assuming LoD, AoA, TSFC to be constant allows to find an analytical solution, as is presented
in the upcoming equations. Consider the equation (2.13), where the A and B are constants
and x is the variable for which the solution it is pursued.

dx

ds
+ A x = B (2.13)

The solution to this problem (2.13) can be obtained by using the integrating factor given
in (2.14), where C is a new constant. By replacing x = mfe equation (2.15) is obtained.

x =
B

A
+ C e−A s (2.14)

mfe =
B

A
+ C e−A s (2.15)

It is understood that, the consumed fuel mass at the start or at cruise range zero has to
be zero mfe(Rcr = 0) = 0, which is the initial condition to the equation (2.15). Inserting this
observation leads to equation (2.16)

2.3. METHOD FOR SOLVING THE ODE 17

mfe(s = Rcr = 0) = 0 =
B

A
+ C

⇒ C = −B

A

(2.16)

Defining A and B as equations (2.17) and (2.18), respectively and incorporating equation
(2.16), the analytical solution for the cruise fuel burn can be written as equation (2.19).

A =
g

a

1

Ma
TSFC

1

LoD cos(AoA) + sin(AoA)
(2.17)

B = A ms (2.18)

mfe(s = Rcr = 0) =
B

A
+
−B

A
e−A s

⇔ mfe =
B

A
(1− e−A s)

⇔ mfe =
B

A
(1− e−A s)

⇔ mfe =
A ms

A
(1− e−A s)

⇒ mfe(s = Rcr) = ms

(
1− e

−g
a

1
Ma

TSFC 1
LoD cos(AoA)+sin(AoA)

s
)

(2.19)

This analytical expression in equation (2.19) is compared with the output of different nu-
merical solvers of Pythons open source library SciPy. The different numerical ODE solvers
are within the method solving initial value problem (solve ivp) and each solver comes with
several options, which are documented in [4]. The results and the comparison is given in
section 3.1. However, the conclusion of this investigation is that, SciPy ’s Runge Kutta of
order 5 (RK45) can be employed without any noticeable loss of accuracy. RK45 assumes
an accuracy of the fourth-order method, but steps are taken using the fifth-order accurate
formula. The occurring deviations to the analytically obtained solution (2.19) are less than
milligrams, which exhibits a sufficient level of accuracy.

SciPy allows the user to define the number and the location of steps. However, having
compared its default option with less than 20 steps to a ridiculous high number of 1460597
steps, no noticeable deviation could be observed. Fewer steps at which calculations happen
results into a faster execution time. This becomes even more clear when recalling that each
step invokes surrogate evaluations. In case of 20 used steps undertaken, in order to solve the
cruise fuel consumption ODE, for each step in this iterative process, the corresponding values
for LoD, AoA, TSFC with the input set of Ma, h, mass are necessary. In simpler terms, each
surrogate model obtain an input set of Ma, h, mass and provides the corresponding output for
LoD, AoA, TSFC , which are predictions, thus ˜LoD, ˜AoA, ˜TSFC . Since, this has to done be for
each step, 20 ∗ 3 = 60 surrogate model invocations for solving the cruise fuel burn equation
once, are required. Therefore, the low number of steps and because of the sufficient accuracy
of the solution with SciPy ’s default settings for RK45 are chosen to solve the cruise fuel burn
mass.

As a final recap, the cruise fuel burn equation cannot be solved analytically due to explained
reasons and thus is solved with an outstanding accuracy employing SciPy ’s numerical ODE
solver RK45 within the solve ivp environment applying the default options.

2.4. MISSION FUEL MASS ITERATION 18

2.4 Mission fuel mass iteration

For solving the cruise fuel burn equation (2.11) the present total mass of the airplane ms ,
which is the starting mass for the cruise segment, is required. However, the cruise starting
mass ms is not known beforehand. It depends on the fuel mass of the remaining segments
fuel masses. These are the fuel weights of descent, landing and taxi to parking. As explained
in section 2.2, only the cruise fuel weight mfe for the given mission or missions is calculated
by solving the ODE (2.11). In this section mfe is denoted as mcr in order to highlight that
it is only the fuel mass for the cruise segment. The required fuel masses for the remaining
flight segments are obtained through empirical fuel fractions from table 2.1. The process for
computing the total fuel mission mass mf , the cruise fuel mcr and the resulting cruise starting
mass ms can be viewed in the figure 2.2.

initial starting and mission fuel mass (ms,0, mf ,0)

ODE solver mcr

new starting and mission fuel mass (ms,n, mf ,n) mass recalculation ms∗, mcr∗, mf ∗

Figure 2.2: Initial mass and mass fix-point iteration workflow

Since the cruise starting mass ms is not known before knowing the cruise and total fuel
masses (mcr , mf), the initial cruise starting and total fuel mass (ms,0, mf ,0) are estimated based
on the equations (2.20) to (2.22). The variables for the equations mtakeoff ,max , fzero , feng ,start

moe , mpayload are denoted as maximal takeoff, zero fuel, engine start, operating empty weight
and design payload, respectively. The fuel fractions fr1 , fr2 , fr3 , fr4 are for the following flight
segments, after engine start, taxi to runway, takeoff and climb and acceleration, respectively.

fzero = moe + mpayload (2.20)

mf ,0 = mtakeoff ,max − fzero (2.21)

ms,0 = (fzero + feng ,start) fr1 fr2 fr3 fr4 (2.22)

By proving ms,0 to the cruise fuel ODE (2.11) the corresponding cruise fuel mcr is obtained,
which is passed to the block mass recalculation. Here the new cruise starting and total fuel
masses (ms,n, mf ,n) are calculated. For computing former (ms,n) the equation (2.22) is still
valid, however, computing the new total fuel mass mf ,n two different possibilities were found.
One by using all known mass relationships straight forward and solving mf ,n numerically, e.g.
the Newtons method. The second method was obtained by inserting the mass equations into
each and performing transformations. With that an analytical solution was obtained. Here,
only the derivation of the analytical solution shall be explained.

The demand for mf ,n is stated in equation (2.24), where mafter ,cr is the mass after the cruise
segment and frcr is introduced as auxiliary fuel fraction for the cruise segment and is given
in equation (2.23). In words, the mass after the cruise segment divided by the mass after
acceleration and climb must be equal to the cruise fuel fraction.

2.4. MISSION FUEL MASS ITERATION 19

frcr =
ms − fcr

ms
(2.23)

mafter ,cr

ms
− frcr

!
= 0 (2.24)

The mass after the cruise segment mafter ,cr can be written in the form of equation (2.25),
where frreser is the known fuel reserve fraction, provided in table 2.1. The fuel fractions
fr5 , fr6 , fr7 stand for taxi to parking, landing and descent, respectively and are also given in
table 2.1. The unknown in this equation is the new total fuel mass mf ,n. Applying insertions
and mathematical transformations with the equations (2.22) to (2.25), mf ,n can be written
as equation (2.27), where fa as an auxiliary term is given in equation (2.26).

mafter ,cr =
fzero + mf ,n frreser

fr5 fr6 fr7
= 0 (2.25)

fa = fzero frcr fr1 fr2 fr3 fr4 fr5 fr6 fr7 (2.26)

mf ,n =
fa− fzero

freser − frcr fr1 fr2 fr3 fr4 fr5 fr6 fr7
(2.27)

To recap, after an initial guess for starting cruise and total fuel mass ms,0, mf ,0, they are
passed to the ODE solver, which outputs its corresponding cruise fuel weight mcr . With the
equation (2.23) an auxiliary fuel fraction for the cruise segment is calculated and used in the
mass recalculation box, depicted in figure 2.2. Here by employing the equations (2.22) and
(2.27) the new cruse starting and total fuel mass ms,n, mf ,n are obtained, respectively. This
process is repeated as long the convergence criteria ∆ = mf ,n − mf ,old ≤ ε is met, where ε
is a tolerance parameter. The relative and absolute tolerance parameter are set to be 5e−5
[2]. Such an iterative method is also called fix-point iteration. Since the described workflow
is iterative, the resulting change and their interdependencies (mass snowball effect) are taken
into account. In case a convergence is achieved, the final values for the cruise starting, cruise
fuel and total fuel mass 2.2 are found (ms∗, mcr∗, mf ∗).

As mentioned above, the problem (2.24) can be solved numerically or analytically. In order
to verify the analytical solution it has been compared successfully with the numerical New-
tons’ method. The presented workflow defining the auxiliary term frcr (2.23) can be further
simplified by directly inserting frcr into the equations. This results into equation (2.76) and
its derivation with respect to the shape parameter is explained in more details in section
2.6. The results of this direct (without auxiliary term) approach differed marginally from the
previous auxiliary method. Therefore, Matlab and SymPy (open source Python library) were
used in order to verify the undertaken mathematical transformations. The symbolic results
confirmed the handcrafted analytical solution.

One interesting finding could be observed. Consider the figure 2.2, which shows the reoc-
curring or iterative process, thus the fix-point iteration. Depending on applying the auxiliary
or the direct version, different numbers of iterations were needed to get to the final solutions
for ms∗, mcr∗, mf ∗. As mentioned, also the end values for ms∗, mcr∗, mf ∗ would differ, how-
ever only around the 10th decimal place. By changing the missions definitions, it could be
observed that in most cases the direct version required more iterations to converge. In some
cases, more than two to four times more iterations were required. Thus, missioninformer’s

2.5. SURROGATE MODELS 20

default method to solve equation (2.24) is by employing the auxiliary term frcr .

Finally, the missioninformer’s constraint violation check shall be elaborated. Since the
user is completely free in defining the desired mission or missions, it is possible for an un-
practiced user to define an unrealistic high range or payload. Also, possible is that, e.g. the
predicted ˜LoD with the preliminary aircraft synthesis software turned out to be too optimistic
and at the detailed Reynold-Averaged-Navier-Stokes-Equations- based (RANS) aerodynam-
ics analysis. In such cases the required fuel masses or other weights can exceed the mass
constraints set by the top level aircraft requirements (TLAR) and the preliminary design.
Therefore, verifying whether given constrains are violated is necessary. The workflow with
the constraint violation check is depicted in figure 2.3. As it can be observed, it is performed
after each mass recalculation. In case of a found constraint violation, a colored warning

initial starting

and mission fuel

mass (ms,0, mf ,0)

mission input

file

ODE solver mcr

new starting and

mission fuel mass

(ms,n, mf ,n)

mass recalculation ms,n, mf ,n

ms∗, mcr∗,
mf ∗

check constraint

violation

Figure 2.3: Second workflow with some more details

statement will be given to highlight an eventual inconsistency with the possible incorrectness
of the mission inputs definition. The following checks are made, where mtakeoff ,max , meng ,start ,
mland ,max , maft,desc , mf ,max , mf are denoted as the weights of maximal takeoff, engine start,
maximal landing, after descent, maximal fuel and actual required total fuel, respectively.

mtakeoff ,max < meng ,start

mland ,max < maft,desc

mf ,max < mf

(2.28)

2.5 Surrogate models

In very brief words, a surrogate model can be described as an approximation model. In
most cases it is used in order to pack computational heavy physical based calculations into
a simpler and execution time friendlier calculation environment. Surrogate models are very
popular in the field of optimization, because every optimization algorithm evaluates function
values with variation of the design variables. The design variables are the parameters which
are changed by the optimizing algorithm in order to fulfil the minimization or maximization
task. The design variables could consist of only one variable, e.g. the wing aspect ratio.

2.5. SURROGATE MODELS 21

Another example for many design variables is topology optimization, where the number of
design variables is equivalent to the number of the discretized finite elements. For a real
world application, e.g. an aircraft or a car the number of finite elements can easily overreach
millions. The optimization algorithm tries to minimize the objective function by changing
the design variables and usually, each change demands a new calculation. With the variation
of the design variables, the optimization algorithms collects outputs which are compared to
each other in order to follow a steadily improving path.

In case of a flow field computation, changing only one parameter, e.g. the angle of attack
(AoA), obligates a new expensive computational task. Depending on the applied fidelity and
the object (airplane, car, turbo machinery) for which the flow field is solved, it could acquire
seconds till years (Direct Numerical Simulation). Thus, one objective of surrogate models is
enabling feasible computational times. Additionally, surrogate models can be generated and
invoked on none high performance computers.

Surrogate models are also known as metamodels or models of models. Eldred er al. [8]
classified surrogate models into three categories: data-fits, reduced order models and hierar-
chical models. Reduced-order and hierarchical surrogate models can be further classified as
physics-based approaches, due to the exploitation and simplification of governing equations
[5]. Therefore, these models are considered as intrusive methods. Data-fit surrogate models,
however, are assigned to the black-box approach, where the outputs are only based on the
inputs, without necessarily knowing the underlying equations. Black-box approaches are non-
intrusive methods and can be further categorized into regression and interpolation. The main
difference between these are, that interpolation must match the training or reference data
at the given reference points, whereas regression is not obligated to match the sample data
at the reference locations. Two widely used interpolation surrogate models are Radial Basis
Function (RBF) and Kriging models. To generate and use the black-box intrusive surrogate
models, sample data is required which for the missioninformer is provided by the output of
the DLR aerodynamic analysis and optimization workflow FSAerOpt [25] involving DLR’s
flow solver TAU.

After having the input or training data, a surrogate model and its intern tuning parameter
with which the model shall be constructed needs to be defined. The generation of the surro-
gate model (offline phase) can claim some noticeable time, however, still in feasible manner.
Invoking the already build surrogate model (online phase) can be compared with regard to
execution time to solving a simple linear equation, which is satisfactorily feasible. The main
disadvantage by applying surrogate models is the loss of accuracy compared to the underlying
physics based equations or the measured experimental data. For assessing the quality of the
surrogate model some methods are presented in [24]. However, in missioninformer one of the
most commonly used error measurement, the root mean square error (RMSE), is employed.
It is given in equation (2.29), where n, yi , ỹi are denoted as the number of validation points
(training or sample data obtained from workflow of FSAerOpt [25]), the actual value and the
predicted value, respectively.

RMSE =

√√√√1

n

n∑
i=1

(yi − ỹi)2 (2.29)

2.5. SURROGATE MODELS 22

The missioninformer involves two interpolation surrogate models, Kriging and RBF with
different options, which are described in section 2.5.1 and 2.5.2. Both models will be tested
with respect to execution time, robustness and RMSE with different model specific options in
section 3.4. Surrogate models within the missioninformer are generated for ˜LoD, ˜AoA, ˜TSFC
and their gradients with respect to shape parameter. The input set for the mentioned desired
output state and gradient variables consists of Ma, h, ms . The state surrogate models are
invoked for solving the equation (2.11), thus needed for the cruise fuel mass computation.
For the rest of the flight segments no surrogate models are required, since fuel fractions are
exploited as explained in sections 2.2, 2.3 and 2.4. Solving the state fuel cruise mass invokes
the three required surrogate models to predict ˜LoD, ˜AoA, ˜TSFC at each step undertaken by
the chosen RK45 solver [4]. The total number of state surrogate model invocations for the
state can be described as equation (2.30). The number of the gradient surrogate model
invocations further includes the number of the shape parameter. The required number of
gradient surrogate models and their number of invocations are given in equations (2.31) and
(2.32), respectively.

#invok,state = 3 · stepsRK45 (2.30)

#gener ,grad = 3 · #shape,param (2.31)

#invok,grad = 3 · stepsRK45 · #shape,param · 2 · #fix ,pkt,iter

⇒ 6 · stepsRK45 · #shape,param · #fix ,pkt,iter
(2.32)

In order to understand why equation (2.32), briefly missioninfomers implemented method
to derive gradients shall be mentioned, which in detail is explained in subsection 2.6.2. The
gradients in missioninformer are obtained by exploiting the Central Differencing Scheme,
which basically adds a very small positive and negative perturbation to the current state of
the present desired variable (LoD, AoA, TSFC), for which the gradient is desired and divides
the result by two times the size of the perturbation. Due to the results for both perturbed
states, positive and negative added perturbation, the number of surrogate model invocation
increases. In simpler terms, the surrogate model is invoked once for positive added permu-
tation and once for negative added perturbation. The perturbation is called step-size. How
and why missioninformers default step-size has the value 1e−5 is described in subsection
2.6.2 and section 3.2.

Additionally, also the final values for the gradients are obtained after a fix-point iteration.
In cases of a barely solvable mission more than 500 iterations were required, in some cases
even no solution was obtainable and finally in cases where the missions were defined properly
(not unrealistic high ranges or payloads) only 4 fix-point iterations were required. As for
the tested missions, a correlation could be read out. In cases where the constraint violation
warning was given, more than 4 fix-point iterations could be seen. Therefore, it is advised to
observe the warning outputs. Note, the number of the fix-point iterations is also depended
on the chosen step-size. The number of 4 fix-point iteration is met due to the well-fitted
step-size of 1e−5. The step-size can be changed inside the mission input file for each mission.
However, the default value in missioninformer is set to 1e−5 and a change in its value is
assumed to most likely have a negative impact on the number of fix-point iterations. The
reasons for that will become clearer by considering the convergence behavior depicted in the

2.5. SURROGATE MODELS 23

step-size study in section 3.2.

Assuming having 126 shape parameter, 20 required steps for the ODE’s integration and 4
fix-point iterations, the gradient surrogate models are invoked 30240 times. Using directly
CFD calculations, where one CFD result takes easily 3 hours using a reasonable amount of
high performance computer resources.

Finally, it shall be mentioned that the number of fix-point iterations is limited to 500
iterations. In cases, where the missions are physically correctly defined and no constraint
violation warning were observed, not more than 5 fix-point iterations were encountered.
Therefore, it is regarded to be highly unlikely to require more than 500 iterations. When the
limit of 500 iterations is reached, the user will be notified in the output about the abortion
due to the exceeding of the fix-point iteration number’s limit.

2.5.1 Kriging models

Kriging for using as a surrogate model was originally developed for the field of geostatics
by Daniel G. Krige, after which the method is named [16]. The term Kriging was shaped
by Matheron [22], who was also the first to formulate it mathematically. Initially after its
development, Kriging was used to model continuous defined functions based on measurement
data. The foundation of exploiting Kriging models in the Design and Analysis of Computer
Experiments (DACE) was first developed by Sacks et al. [28], where the input points represent
the spatial geographical coordinates. In Kriging models a deterministic response y(x) is a
realization of a stochastic process Y (x) [28] and is described in the following equation:

Y (x) =

Nf∑
k=1

fk (x)βk + Z (x) = f T (x)β + Z (x) (2.33)

The first term is the global model component, where f (x) = [f1(x), f2(x),, fNf
(x)]T is a

vector of Nf basis functions and β = [β1, β2, ..., βNf
] is a vector of the unknown coefficients.

The stochastic component Z (x) is treated as the realization of a stationary Gaussian function
with an expected value of zero (E [Z (x)] = 0) and the covariance is given in equation (2.34),
where R denotes the correlation function with R(0) = 1. Because of this, Kriging models
can be used as interpolation models and thus provide the exact prediction at the training
or sample data. However, by applying regularization, which adds a constant to each control
point, the interpolation turns into regression. The greater the distance of the input, for which
the predicted output is desired is from the training sample data, the greater the error in the
variance gets. In other words, in Kriging models the data are assumed to be exact, but the
function is a realization of a Gaussian process [31]. The second term is denoted as bias, a
systematic departure from the linear model or localized deviation [29].

Cov [Z (xi), Z (xj)] = σ2 R(xi , xj) (2.34)

In 1d the stationary correlation function between any two points in the input space y(xi)
and y(xj), depend only on the difference between these points (∆x = xi − xj). For higher-
dimensional problems, the correlation function in a Kriging model usually obeys the product
correlation rule, given in equation (2.35), where θ = θ(k), k = 1,, Nd is denoted as the

vector of correlation parameters. The notation d
(k)
ij is the distance between two points in the

kth dimension (x
(k)
i − x

(k)
j). The correlation parameters, are called Kriging hyperparameters

and can be found by using the Maximum Likelihood Estimation (MLE) approach. Large

2.5. SURROGATE MODELS 24

θ values represent a weak spatial correlation, whereas small values stand for a strong spa-
tial correlation. Since missioninformer calls SMARTy for its Kriging operations, different
correlations functions can be used. However, within this research the Gaussian correlation
function is used.

Rij (θ, d) =

Nd∏
k=1

R (θ(k), d
(k)
ij) (2.35)

2.5.2 RBF models

RBF stands for Radial Basis Function and is black-box surrogate model, which simulates
complicated design landscapes using a weighted sum of simple functions as shown in equation
(2.36). Here x0, xs , ys are denoted as input space, samples location’s and output’s value,
respectively. The function ψ(||x0 − ci ||) is the kernel function centered at ci and the norm
|| · || is the Euclidean distance. Usually, the training sample points are used as the center,
therefore it can be stated: c = xs ∧ Nc = Ns .

ỹ (x0, xs , ys) = ΨT
0 w =

Nc∑
i=1

wi ψ(||x0 − ci ||) (2.36)

The vector of the unknown coefficients w , is obtained by solving the system of linear
equations given in equation (2.37). The gram matrix Ψ is defined as Ψij = ψ(|| xsi − xsj ||).
In other words, the gram matrix, is the kernel function evaluated at the Euclidean distance
between the i th and the j th samples.

Ψ w = ys (2.37)

The missioninformer invokes Pythons library SciPy and SMARTy for the RBF calcula-
tions. SciPy enables the user to define 7 different kernels, which are given in the equations
(2.38) to (2.44), by changing one input parameter [3]. SMARTy uses the Thin Plate Spline
(TPS) kernel. The variables r , ε are denoted as the Euclidean distance and an adjustable
constant for Gaussian or multiquadtratic functions, respectively. Only 6 of the 7 kernels were
used, since the quintic kernel took multiple hours to provide a solution. The 6 kernels are
used for a comparison to Kriging. The results of the comparison are shown in 3.4

multiquadric =

√(r

ε

)2
+ 1 (2.38)

inverse =
1√(r

ε

)2
+ 1

(2.39)

gaussian = exp [−
(r

ε

)2
] (2.40)

linear = r (2.41)

cubic = r3 (2.42)

quintic = r5 (2.43)

thin plate spline = r2 ln (r) (2.44)

2.5. SURROGATE MODELS 25

2.5.3 Investigations on different surrogate models

In this subsection, the procedure, which was undertaken to investigate on the two most widely
used surrogate models RBF and Kriging shall be explained. Note, the results are all pre-
sented in section 3.4. In the beginning of this section an introduction to RBF and Kriging
and some reasons for the necessity of a reliable surrogate model were given. However, the
main reason comes through the high dependency of the missioninformers output, cruise fuel
mass and their gradients. As explained in the same section, the number of the invocation of
the surrogate models is very high.

Only with a surrogate model, which replicates the underlying physical based behavior cor-
rectly, the results of missioninformer can be considered correct as well. Due to this heavy
dominance 8 different options for Gaussian Kriging and RBF with TPS were chosen as the
investigation parameter, see table 2.2. For further reading, Gaussian Kriging will be referred
to as normal Kriging or only Kriging and RBF with TPS as TPS. The 8 options for Kriging
and TPS were equivalent and are given in table 2.2. The short names on left side of the table
defines the option’s shortcut and are important for interpreting the plot results in section
3.4. The values −1, 0, 1, 2 for Augmentation mean no, constant, linear, and quadratic trend
function, respectively. In case Regularization is set to True, a regularization constant is added
to each control point.

Name Augmen
tation

Regulari
zation

A −1 False
B 0 False
C +1 False
D +2 False
E −1 True
F 0 True
G +1 True
H +2 True

Table 2.2: SMARTy Kriging and TPS parameter used for investigation surrogate quality

The investigations were performed with two different missions as input and are reproduced
in table 2.3. The masses are given in kilogram and the cruise altitude h and cruise range Rcr

in meters. For the central difference step-size the default value of 1e−5 was chosen. First the
surrogate models Kriging, TPS and RBF were only tested for the state condition, meaning
no gradients were calculated.

2.5. SURROGATE MODELS 26

Mass Mission 1 Mission 2

maximal takeoff 245e3 245e3
maximal landing 192.2e3 192.2e3
operating empty 132.5e3 132.5e3
manufactures empty 119.2e3 119.2e3
maximum zero fuel 180.5e3 180.5e3
maximum fuel 107.6e3 107.6e3
design payload 38.52e3 33.60e3
maximum payload 48.00e3 48.00e3

Flying parameters

Ma 0.83 0.82
h 10.668e3 11.000e3
Rcr 9186.0e3 5185.6e3

Others

step-size 1e−5 1e−5
weight-factor 0.7 0.3

Table 2.3: Missions definitions for investigation on different surrogate models

For SciPy ’s RBF 7 different kernel functions, which are given in the equations (2.38) -
(2.44), were tested with a SciPys smooth value of 0.1. In case of smooth value greater zero,
regularization is employed. Without it having defined to be greater zero, the generation of
a surrogate model failed. For seeing the used SciPy RBF’s kernel functions and interpreting
the SciPy RBF investigation results the table 2.4 is provided. Note, the kernel quintic was
dropped due its high amount of calculation time.

Name Kernel

A multiquadric
B inverse
C gaussian
D linear
E cubic
F thin plate

Table 2.4: Different SciPy RBF kernels used for surrogate model quality investigation

Since in the state calculation only 3 surrogate models (˜LoD, ˜AoA, ˜TSFC) are required to
be generated, the research is conducted much faster compared to the gradient version. The
weight before cruise or the starting mass for the cruise segment ms , the fuel weight only for
the cruise segment mcr , the total fuel mass mf , which is required for the whole mission and
the number of the fix-point iterations are considered for the state investigation. For each
mass the mean value and the standard deviation over the options given in the tables 2.2 and
2.4 following the equations (2.45) and (2.46), respectively were conducted.

x̄ =
1

N

n∑
i=1

xi (2.45)

2.5. SURROGATE MODELS 27

σ =

√√√√ 1

N

N∑
i

(xi − x̄)2 (2.46)

The reason for monitoring the mentioned masses is as follows. Since only the cruise flight
segment involves a physical based equation rather than the empirical collected fuel fractions,
which are constants and thus their multiplication results to a new constant (commutative
behavior), only a scaling difference between the masses is expected. The fuel fractions are
used only before and after the cruise flight segment. Therefore, if mistakes occurs within the
investigation, plotting all the masses enables to find them easily visually. Thus considering
the mentioned masses can be viewed as a verification technique. The second reason is, the
impact of the different surrogate model options shall not only be looked at the final outcome,
total fuel mass fm, but also on the masses in between.

The number of fix-point iterations for the state allows making assumptions about the exe-
cution time. In general, it can be assumed, the less the number of fix-point iterations, the less
the execution time is. Thus, it provides information about the impact of the model parameter
on the execution time and convergence behavior. For only Kriging, 8 options were tested,
therefore 8 results are obtained. From here it is possible to compare only within the Kriging
options. For TPS the same is done with its own 8 results. For RBF 7 different kernel versions
were tested. With the presented method the surrogate model can only be compared within
its own surrogate model options environment. However, it is desired to compare Kriging with
TPS and with SciPys RBF, which would result in 8+8+7 = 23 results to be compared. Note,
for further reading RBF will be used as an abbreviation for SciPys RBF. Since this is too
much for one single plot, the mean value for each surrogate model (Kriging, TPS, RBF) is cal-
culated and compared. In case the mean values matches or exhibits a low deviation it can be
assumed that the corresponding models derive to same or resembling solutions and vice versa.

By looking at the standard deviation within each model, a robustness analysis can be
performed. In case the standard deviation (std) is low, the respective surrogate model is
not influenced much by the input parameters and thus can be seen as stable. A stable or
robust might not be the most accurate model, however, it can be assumed to be more reliable
for unknown complex underlying functions. Also, the robustness of the surrogate models
(Kriging, TPS, RBF) was compared among each other. All investigations were performed
for both missions separately and together. For the gradient version, the same is done plus
the execution time for the whole process including reading the aerodynamic input files and
writing out all the gradients.

The next step was to explore the accuracy of the surrogate models. For this purpose, a
set of 38 training data was provided. With this set 3 different accuracy investigations were
employed. In the first version 20 sample points were removed and the surrogate models were
trained thus with the remaining 18 sample points (V18). The second version, 10 sample
points were removed and the surrogate models were trained with 28 sample points (V28).
In these both cases, the obtained model was invoked at the removed samples locations. The
actual functions value for ˜LoD, ˜AoA, ˜TSFC at the removed values are known, since they were
part of the initial 38 sample points. In order to evaluate the error for the surrogate models,
RMSE according to equation (2.29) was used. For the third investigation, the Leave-one-out
cross-validation (LOOCV) was performed. The idea of this method is, one sample point is

2.6. SHAPE GRADIENTS 28

left out and with the remaining sample points a surrogate model is trained. In case of 38
sample points (V38) there are 38 ways to leave one sample point out and thus 38 different
surrogate models can be generated. Each generated surrogate model is invoked at the loca-
tion of the left out sample point and by exploiting RMSE the error was measured. To be
more precise, missioninformer automatically finds non trimmed sample data and does not
include it for generating surrogate models. For this workflow, instead of the overall 38 sample
points, only 35 fully trimmed sample points, were used.

For the 3 mentioned versions, each version can be tested only with regard to the surrogate
model (Kriging, TPS, RBF) and inside a respective surrogate model there are 8 options for
Kriging and TPS and 7 options for RBF. However, because bad execution time was observed
when using SciPys RBF, only Kriging and TPS were chosen for the mentioned investigation.
In case of RBF’s quinitc kernel, even after 4 hours no solution was obtained. The explained
process is performed for the state and the gradient version. The options which exhibit the
least RMSE are collected and presented in the results subsection in 3.4.1.

2.6 Shape Gradients

In this section it shall be explained, how the gradients of the presented cruise fuel burn
equation (ODE in equation (2.11)), can be computed. When the gradients are mentioned,
then gradients with respect to the shape parameter, which are used to define the aircraft wing,
are meant. For this work two main methods were evolved, an analytical and a numerical
approach. The first one, however showed not be successful. A possible explanation for
that will be given in the upcoming section. The numerical approach is based on the Central
differencing Scheme and is divided into 2 different workflows called direct and indirect, which
will be elaborated in subsection (2.6.2). Furthermore, a step-size study in order to find a
reasonable step-size and thus reliable gradients will be topic of the subsection 2.6.2

2.6.1 Analytical attempt

Assuming, an analytical solution is possible, a fast and maximal computational accurate
solution is obtained. These were the main reasons for trying to find an analytical solution.
Fast in this regard means, the result is received immediately after all mathematical operations
(summation, multiplication) are executed without any necessity of additional repetitive loops.
The state equation for the cruise fuel burnt is written below again and for simplicity will be
referred to as ODE and the objective is to find dODE .

ODE =
dmcr

ds
=

g

a

1

Ma
TSFC (ms −mfe)

LoD tan(θ) + 1

LoD cos(AoA) + sin(AoA)

The ODE’s gradient dODE with respect to the shape parameters is already given in [14].
However, the same work has been done again in order to verify the existing solution. Once
by hand and once by using Python’s library SymPy for a symbolic solution. Ilic [14] results
could be proven to be entirely correct and shall be stated in the upcoming equations. Since
the gradient version is a term loaded equation, it will be split into groups, as advised in
[14]. The grouped equation as the new basis is given in equation (2.47) for which its terms
definitions are provided in equations (2.48) to (2.50)

ODE = kc ka km (2.47)

2.6. SHAPE GRADIENTS 29

kc =
g

a

1

Ma
TSFC (2.48)

ka =
LoD tan(θ) + 1

LoD cos(AoA) + sin(AoA)
(2.49)

km = ms −mcr (2.50)

A change in the shape parameter p results into a change in TSFC , ms , mcr , LoD, AoA, which
means these variables are not to be considered as constants. Equations (2.51) to (2.56) shows
the general form of the dODE , where the flight path angle θ 6= 0 is not necessarily zero. The
equations (2.53) and (2.54) results from the steady state flight condition. Here the denoting
of the variables q, S , W , L , D , T is the dynamic pressure, reference wing area, weight, lift,
drag and thrust, respectively.

dka

dp
=

[tan(θ) sin(AoA)− cos(AoA)] dLoD
dp + [LoD sin(AoA)− cos(AoA)] [LoD tan(θ) + 1] dAoA

dp

[LoD cos(AoA) + sin(AoA)]2

(2.51)

dLod

dp
=

d

dp

CL

CD
=

1

C 2
D

(
CD

dCL

dp
− CL

dCD

dp

)
(2.52)

L = W cos(θ)− [D + W sin(θ)] tan(AoA) (2.53)

CL =
m g

q S
[cos(θ)− sin(θ)tan(AoA)]− CD tan(AoA) (2.54)

dCL

dp
=

g

q S
[cos(θ)− sin(θ) tan(AoA)]

dm

dp
− m g

q S2
[cos(θ)− sin(θ)tan(AoA)]

dS

dp

− 1

cos(AoA)2

(
m g

q S
sin(θ) + CD

)
dAoA

dp
− tan(AoA)

dCD

dp
(2.55)

(
dCL

dp

)
T=0

=
g

q S
cos(θ)

dm

dp
− m g

q S2
cos(θ)

dS

dp
(2.56)

The missioninformer assumes the flight path angle θ to be zero and thus the above stated
equations are simplified to the two upcoming equations. Even though it has been showed
how LoD can be derived w.r.t. the shape parameter, however since its gradient is provided
as input data, there is no need to its equation.

ka(θ = 0) =
1

LoD cos(AoA) + sin(AoA)
(2.57)

dka(θ = 0)

dp
=
−cos(AoA) dLoD

dp + [LoD sin(AoA)− cos(AoA)] dAoA
dp

[LoD cos(AoA) + sin(AoA)]2
(2.58)

The mass term km was the obstacle, why the gradients can not be solved analytically as
it will be shown now. The starting mass ms can be modeled as done in equation (2.59),
where mstruc , mp, mcr (R), mo are denoted as masses of structure, payload, cruise and other,

2.6. SHAPE GRADIENTS 30

respectively. The structure and other masses as well the payload are not meant to change by
changing the shape parameter. The only remaining mass, which is desired to change with the
cruise range R is mcr (R). Transforming this idea to mathematical expressions, the equations
(2.60) to (2.63) are obtained.

ms = mstruc + mp + mcr (R) + mo (2.59)

dmstruc

dp
= 0 (2.60)

dmp

dp
= 0 (2.61)

dmcr (R)

dp
6= 0 (2.62)

dmo

dp
= 0 (2.63)

Following these the equation (2.64) is obtained and by inserting this to the mass definition
from equation (2.50), the undesired state given in equation (2.65) can be observed.

dms

dp
=

dmcr (R)

dp
(2.64)

dkm

dp
=

dms

dp
− dmcr (R)

dp

→ dmcr (R)

dp
− dmcr (R)

dp

⇒ 0

(2.65)

In this case the term for which the gradient is desired to be calculated vanished. Therefore,
the approach stated in equation (2.66) was pursued instead, which leads to equation (2.67).
In words, the change of the starting mass is assumed to be constant and thus is not influenced
by the change of any shape parameter. At this point, it shall clearly be highlighted that this
assumption is only made in order not to lose the cruise fuel mass term. Whether this models
the physical behavior correctly was not known at this stage.

dms

dp
= 0 (2.66)

dkm

dp
=
−dmcr

dp
(2.67)

However, after having performed, the complete process for obtaining the analytical solution
for the cruise fuel mass gradients, it can be stated that the assumption made in equation
(2.66) is not correct. For this knowledge to gain, the gradients were calculated numerically
using central finite differences. Due to the big deviation between the analytical and the
numerical solution, the proposed finding can be given. Nevertheless, the further progress for
receiving the final analytical solution shall be explained. The variables mf ,zero , freser , mf for
the upcoming equations are denoted as zero fuel mass, fuel reserve mass, and total fuel for
all flight segments, respectively. As explained in section 2.4 the variable starting with fri are

2.6. SHAPE GRADIENTS 31

fuel fractions, where fr1 , fr2 , fr3 , fr4, fr5 , fr6 , fr7, frcr are for the flight segments, engine start,
taxi to runway, takeoff, climb and acceleration, taxi to parking, landing, descent and cruise
fuel fraction respectively.

fa (frcr) = fzero frcr fr1 fr2 fr3 fr4 fr5 fr6 fr7 (2.68)

mf =
fa(frcr)−mf ,zero

freser − frcr fr1 fr2 fr3 fr4 fr5 fr6 fr7
(2.69)

frcr =
ms −mcr

ms
(2.70)

ms = (mf ,zero + mf) fr1 fr2 fr3 fr4 (2.71)

The objective is to solve the equation (2.69). However, the problem is that the three
equations (2.69) to (2.71) are coupled. This can be seen better by rearranging the following
equation.

ff = fr1 fr2 fr3 fr4, fr5 fr6 fr7 (2.72)

mf =
frcr fr1 fr2 fr3 fr4, fr5 fr6 fr7 − 1

freser − frcr , fr1 fr2 fr3 fr4, fr5 fr6 fr7
mf ,zero

=
frcr , ff − 1

freser − frcr , ff
mf ,zero

(2.73)

frcr =
ms −mcr

ms

ms = (mf ,zero + mf) fr1 fr2 fr3 fr4

It can be observed that in equation (2.73), the output of the ODE, the fuel cruise mass
mcr is required. This, according to the equation (2.70), requires for its solution the cruise
starting mass ms . However, for getting the starting mass ms , according to equation (2.71),
the total fuel mass mf is demanded. The problem can be understood visually quite easily
and thus is provided in figure 2.4.

mcr mf

mf ms

ms mcr

Figure 2.4: Coupled mass equations

One way to solve equation is to solve the equation (2.75) with another fix-point iteration.
The used scalars are given in equations (2.72) and (2.74). The one disadvantage lies in the

2.6. SHAPE GRADIENTS 32

nature of fix-point iterations, its repetitiveness, which requires higher execution time. The
other is, that a more precise solution could be obtained.

ff2 = fr1 fr2 fr3 fr4 (2.74)

mf = mf ,zero =

(
1− mcr

(mf ,zero + mf) ff2

)
ff − 1

freser − ff

(
1− mcr

(mf ,zero + mf) ff2

) (2.75)

However, with some trial and error this coupling could be resolved and a without the
necessity of fix-point iterations could be found, which is given in equation (2.76). The form
of the solution, which was found by hand, originally contained a square root. By making use
of Matlab and Pythons library SymPy, a symbolic solution could also be obtained. Matlabs
and Sympys solution were equivalent in their form, thus also in their results, when inserting
values for the variables. However, their form of solution did not contain any square root.
The stated equation (2.76) was used for further progress, since it is assumed to be easier for
deriving gradients.

mf =
ff2 mf ,zero + ff mcr − ff ff2 mf ,zero

ff2 (ff − freser)
(2.76)

In order to highlight why equation (2.76) is easier for deriving gradients, the considered
constants are placed on the left side and the depended or relevant part for derivation are on
the right side in equation (2.77)

mf =
ff2 mf ,zero − ff ff2 mf ,zero

ff2 (ff − freser)
+

ff mcr (p)

ff2 (ff − freser)
(2.77)

Recall, mcr is the fuel mass for the cruise segment and is the output of the ODE, which now
is desired to be derived with respect to the shape parameters. In equation (2.77), the term
mcr (p) is indicated to be the only important parameter for the derivation. Therefore, the
derivative of the total fuel mass can be written as in equation (2.79), where the mathematical
definition for dODE is given in equation (2.78).

dODE =
d

dp
ODE =

d

dp

(
dmcr

ds

)
(2.78)

dmf

dp
=

ff

ff2 (ff − freser)
· dODE (2.79)

Finally, by inserting all equations into each other the dODE ’s final version is given equation
(2.80), where LoD, AoA, TSFC and their gradients are obtained by invoking the surrogate
models, ka , km, kc are found in equations (2.57), (2.50) and (2.48), respectively. The gradients
dka
dp , dkm

dp are found in equations (2.58) and (2.67), respectively. The variable p here is defined
as a scalar for the sake of simplicity. In application p in the equations (2.78) to (2.80) is a
vector. Thus, the equations need to be solved for each component of p.

2.6. SHAPE GRADIENTS 33

dODE =
ODE

dp
=

d

dp

(
dmcr

ds

)
= ka km kc

dTSFC

dp
+ kc TSFC ka

dkm

dp
+ kcTSFC km

dka

dp

= kc

(
ka km

dTSFC

dp
+ TSFC ka

dkm

dp
+ TSFC km

dka

dp

)
= kc

(
ka km

dTSFC

dp
+ TSFC km

dka

dp

)
− kc TSFC ka

dODE

dp

= kc

(
ka km

dTSFC

dp
+ TSFC km

dka

dp

)
1 + kc TSFC ka

(2.80)

After having seen the formal equations, there are two possible ways to calculate the gra-
dients, the one-shot method and the indirect method. Both shall be explained with their
respective workflow in figures 2.5 and 2.6. The one-shot version, depicted in figure 2.5, will
let the state fix point-iteration finish as discussed in section 2.4. Based on the converged
results it will then directly calculate the gradients for which only one evaluation is required.
Since the state fix-point iteration is indispensable with effectively only one more function call
the gradients are found.

The iterative workflow is depicted in figure 2.6. The initial starting and total fuel mass
ms,0, mf ,0 are guessed as explained in section 2.4. In order to calculate the gradient of the
cruise fuel weight the initial cruise fuel weight and cruise starting mass is passed to the
dODE-block, which calculates the gradient of the cruse fuel weight with respect to the shape
parameters. This block is not required in the one-shot-version nor in the state fix-point
iteration explained in section 2.4. Thus, here an additional calculation block is injected. It
is used for computing the gradient of the total fuel mass. Now the whole process is repeated
as long as the deviation between the previous and the current gradient of the total cruise
fuel mass is below a defined threshold. Both methods were implemented in missioninformer,
however they are not active, because of the explained reasons.

2.6. SHAPE GRADIENTS 34

in
it

ia
l

st
ar

ti
n

g

an
d

m
is

si
on

fu
el

m
as

s
(m

s,
0
,m

f
,0

)

O
D

E
m

cr
,0

m
f
,n

,m
s,

n
m

as
s

re
ca

lc
m

s
∗

m
s
∗,

m
f
∗

O
D

E
m

cr
∗

m
cr
∗

d
O

D
E

d
m

cr
∗

d
p

d
m

cr
∗

d
p

d
m

f

d
p

d
m

f
∗

d
p

F
ig

u
re

2.
5:

A
n
al

y
ti

ca
l

at
te

m
p

t
to

ca
lc

u
la

te
gr

ad
ie

n
ts

-
on

e-
sh

ot
ve

rs
io

n

2.6. SHAPE GRADIENTS 35

in
it

ia
l

st
ar

ti
n

g

an
d

m
is

si
on

fu
el

m
as

s
(m

s,
0
,m

f
,0

)

O
D

E
so

lv
er

m
cr
,n

m
cr
,n

m
cr
∗

d
O

D
E

d
m

cr
,n

d
p

d
m

cr
∗

d
p

d
m

f

d
p

m
cr
,n

d
m

f
∗

d
p

m
s,

n
m

as
s

re
ca

lc
m

s
∗

m
f
∗

F
ig

u
re

2.
6:

A
n
al

y
ti

ca
l

at
te

m
p

t
to

ca
lc

u
la

te
gr

ad
ie

n
ts

-
it

er
at

iv
e

ve
rs

io
n

2.6. SHAPE GRADIENTS 36

2.6.2 Numerical approach

As mentioned in the previous section, an analytical solution was pursued. However, the
approach in section 2.6 had to be verified. In this subsection, the numerical approach for
computing the gradients of the cruise fuel weight and the total fuel weight with respect to
the shape parameters shall be explained. The three most frequently employed methods for
deriving the gradients numerically are forward, backwards and central finite differences. In the
majority of cases central finite differences or also known as central differencing scheme (CDS),
which exhibits the best gradient computing accuracy. The equations for forward, backwards
and central differencing are given in equations (2.81), (2.82) and (2.83), respectively.

df (x)

dx
≈ ∆f (x)

∆x
=

f (x + hs)− f (x)

hs
(2.81)

df (x)

dx
≈ ∆f (x)

∆x
=

f (x)− f (x − hs)

hs
(2.82)

df (x)

dx
≈ ∆f (x)

∆x
=

f (x + hs)− f (x − hs)

2 hs
(2.83)

Here the f (x), hs are denoted as any function with the input argument x and the step-size,
respectively. The choice of the step-size hs is important and thus will be dealt with later in
more details. As pointed with the approximation sign (≈), it is only an approximation of the
gradient. The reason for this can be explained by viewing their derivation. In order to get
the one of the three forms a given function is approximated by the Taylor series and since
only an infinite long Taylor series can give the accurate solution, aborting the Taylor series
after one or two terms cannot be accurate. Here it can also be observed that the gradients
only around the approximated location can be considered acceptable. In other words, the
higher the step-size hs gets, the lower the quality of the approximation gets. The approx-
imation error is also called truncation error. Since computers are used for calculating the
derivate another error must be considered. The round off error, occurs due to the nature of
storing digits into the computer memory or RAM. Having a decimal number, it consists of
multiple digits. Each digit claims some memory and in case providing all numbers consisting
of many digits all desired memory, two obstacles are faced. The memory capacities can be
overwhelmed quite easy. The second problem is that, if only one number already contains
more than 100 digits, it’s processing by the hardware runs into infeasibly high execution time.
Therefore, state-of-the-art accuracy uses double precision to store numbers. Already here an
approximation of the real number is done. This computer based error is called round off error.

Up to now, two kinds of errors were introduced. The third error is called the abortion
error. An infinite Taylor series would remove the abortion error, thus it would be vanished.
In the introduction the forward and backwards finite differing methods were stated to be less
accurate than the central finite differencing scheme. The reason for that can be seen by their
derivation. In short, forward and backwards differing are methods of first order, whereas the
central differencing scheme is a method of second order accuracy.

Since the CDS is considered to be more accurate in most applications, it is implemented in
missioninformer. The equation (2.83) shows that CDS can be used as a block-box method,
where f can by any computation in missioninformer and x + hs , x−hs represents the param-
eter, for which the gradient is desired. It needs to be changed by adding and subtracting the

2.6. SHAPE GRADIENTS 37

step-size hs . However, applying this theory is not straight forward for the calculations done
in missioninformer and thus the CDS does not act as a black-box function. The reasons for
that are the subject of the upcoming discussion.

The gradient of the total fuel mass mf with respect to the shape parameter is the object
of desire dmf

~p . The reason why the shape parameter variable ~p is chosen to be formulated as
a vector is to highlight, that not only one gradient is calculated. Because no optimization
can be accomplished with having defined only one shape parameter, it is more correct to
talk about the shape parameter vector ~p, which notation from here on will be continued to
be followed. In order to apply the straight forward CDS as described with equation (2.83),
the relationship for each variable LoD, AoA, TSFC to all the shape parameters ~p, as stated in
equation (2.84) must be known.

LoD(~p), AoA(~p), TSFC (~p) (2.84)

However, the encountered problem is that these relationships from equation (2.84) are not
known, thus the black box straight forward CDS presented in equation (2.83) cannot be
applied. The following simple and mathematical correct workaround was found.

LoDpertubated = hs
dLoD

d~p
(2.85)

AoApertubated = hs
dAoA

d~p
(2.86)

TSFCpertubated = hs
dTSFC

d~p
(2.87)

With these background, two different workflows, for solving the gradients of the total fuel
mass with respect to the shape parameters can be discussed. The difference in both occurs in
using the auxiliary cruise fuel fraction term frcr given in the following equation or inserting
it directly into the remaining equations as presented in section (2.4)

frcr =
ms − fcr

ms
(2.23)

In case of direct insertion, the equation (2.76) is obtained, as explained in section 2.6 and
is referred to as direct method

mf =
ff2 mf ,zero + ff mcr − ff ff2 mf ,zero

ff2 (ff − freser)
(2.76)

For defining the fuel cruise fraction frcr explicitly the method is referred to as indirect
method. The indirect method’s solution is given in equation (2.88), which derivation can be
seen in section 2.4 with the equations (2.20) to (2.24).

mf =
fa− fzero

freser − frcr fr1 fr2 fr3 fr4 fr5 fr6 fr7
(2.88)

After analyzing two main differencing could be observed. The direct method often claims
more fix-point iterations. In contrast, it was found to be more accurate by satisfying lower
convergence criteria. In case of low convergence parameter, the indirect method stucked in-
side a loop, where it jumped between two values. Since the missioninformer has a limit of
maximal allowed iterations of 500, the iterative method would stop after 500 iterations and

2.6. SHAPE GRADIENTS 38

thus would require more iterations than the direct method. However, a relative and absolute
tolerance [2] value of 5e−5 is assumed to be accurate enough. With this tolerance value,
no permanent stay for the indirect method inside a loop could be observed. Also, in cases
where the missions were defined reasonably, only 4 iterations were required for obtaining
the gradient of the total fuel mass dmf ∗

d~p per gradient component and perturbation direction.
Therefore, the missioninformer default method is chosen to be the indirect method.

The parameter which defines the quality of the gradients by applying CDS is the choice of
the step-size hs . In order to find an appropriate hs two different missions were defined. One,
which raised the constraint violation check to output warning statements and one without.
Thus, these missions can be considered to be hard to be solved (mission 1) and the opposite
(mission 2), respectively. For both missions, applying both methods (direct and indirect) a
step-size study is performed. In case of the harder to solve mission 1, the number of maximal
fix-point iterations was reached. The missions definitions can be found in table 2.5. The
difference between current table 2.5 and the table 2.3 from subsection 2.5.3 is only in the
definition of the range for mission 1. In table 2.5 this has been reduced by 1000 meters.

Mass Mission 1 Mission 2

maximal takeoff 245e3 245e3
maximal landing 192.2e3 192.2e3
operating empty 132.5e3 132.5e3
manufactures empty 119.2e3 119.2e3
maximum zero fuel 180.5e3 180.5e3
maximum fuel 107.6e3 107.6e3
design payload 38.52e3 33.60e3
maximum payload 48.00e3 48.00e3

Flying parameters

Ma 0.83 0.82
h 10.668e3 11.000e3
Rcr 10186.0e3 5185.6e3

Others

step-size 1e−5 1e−5
weight-factor 0.7 0.3

Table 2.5: Missions definitions for investigation on step-size

The convergence behavior of both missions and both methods is presented in section 3.2.
However, the final result is that missionsinformers default step-size is chosen to be hs = 1e−5.

3 Results

In this chapter the results of the methods described in previous chapter shall be presented.
The first topic for this purpose is the solution of the state ODE from equation (2.11).

3.1 Solving the ODE

The main equation upon which’s solution the remaining computations are based on is the
ODE for the cruise fuel burnt mass mcr .

dmcr

ds
=

g

a

1

Ma
TSFC (ms + mcr)

1

LoD cos(AoA) + sin(AoA)
(2.11)

The used technique therefore is by calling SciPy’s function solve ivp [4]. The library comes
along with different solvers and the solution of all were investigated. However only a selection
of the most interesting results shall be presented here. Having compared all available methods
inside solve ivp it could be found out that LSODA and RK45 offered the least difference to
the analytical solution obtained by equation (2.19). Its derivation and explanations can be
read in sections 2.3.

mfe(s = Rcr) = ms

(
1− e

−g
a

1
Ma

TSFC 1
LoD cos(AoA)+sin(AoA)

s
)

(2.19)

The analytical solution is only valid, when assuming that LoD, AoA, TSFC are constant.
Comparing the analytical solution with SciPy ’s numerical solution by employing all available
methods, it could be observed, that LSODA exhibits best results. The figures from 3.1 to 3.4
depicts the analytical and the numerical solution on the left side and their deviation on the
right side. One of the options within LSODA and RK45 is to set points where an integration
step shall be performed. The higher the number of the given calculation points is, the higher
the accuracy of the outcome is. Figures 3.1 and 3.2 depict the results when the user exerted
calculation points. From range R = [0; 100] meter and for the last 100 meter of the cruise
flight range, 500 uniformly calculation points were set. In between, Rmax

8 = 7297989
8 = 912248

calculation points were set. Even though a high number of evaluation points leads to a more
accurate result, recall that for each additional evaluation point, the surrogate models needs
to be invoked. Therefore, it is desired to keep the number of the control points low, if possible.

In figures 3.3 and 3.4, the same calculations are performed with LSODA and RK45, re-
spectively, but with their methods default number of calculation points. The default number
of calculation points is much lower, e.g. for RK45 less than 20 sample points were required.
Comparing all the 4 presented results it can be stated that the deviation or delta between the
analytical and numerical solution is in the order of grams, which is sufficient for the accuracy
requirement of the missioninformer. Even though LSODA delivers the best performance,
since RK45 requires less integrations steps points with barley less accuracy, RK45 with its
default method for setting calculation points is set as default in the missioninformer.

39

3.1. SOLVING THE ODE 40

0 2 4 6

range [m] ×106

0

10000

20000

30000

40000

50000

60000

70000
re

q
u

ir
ed

fu
el

m
as

s
[k

g]
analytical

approximation

0 2 4 6

range [m] ×106

−0.020

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020

d
el

ta
in

re
q
u

ir
ed

fu
el

m
as

s
[k

g
]

delta

Compare analytical function with SciPys LSODA approximation

Figure 3.1: Solution obtained having used LSODA with user defined calculation points

0 2 4 6

range [m] ×106

0

10000

20000

30000

40000

50000

60000

70000

re
q
u

ir
ed

fu
el

m
a
ss

[k
g]

analytical

approximation

0 2 4 6

range [m] ×106

−0.20

−0.15

−0.10

−0.05

0.00

0.05

d
el

ta
in

re
q
u

ir
ed

fu
el

m
as

s
[k

g
]

delta

Compare analytical function with SciPys RK45 approximation

Figure 3.2: Solution obtained having used RK45 with user defined calculation points

3.1. SOLVING THE ODE 41

0 2 4 6

range [m] ×106

0

10000

20000

30000

40000

50000

60000

70000
re

q
u

ir
ed

fu
el

m
as

s
[k

g]
analytical

approximation

0 2 4 6

range [m] ×106

−0.020

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020

d
el

ta
in

re
q
u

ir
ed

fu
el

m
as

s
[k

g
]

delta

Compare analytical function with SciPys LSODA approximation

Figure 3.3: Solution obtained having used LSODA without user defined calculation points

0 2 4 6

range [m] ×106

0

10000

20000

30000

40000

50000

60000

70000

re
q
u

ir
ed

fu
el

m
a
ss

[k
g]

analytical

approximation

0 2 4 6

range [m] ×106

−0.20

−0.15

−0.10

−0.05

0.00

0.05

d
el

ta
in

re
q
u

ir
ed

fu
el

m
as

s
[k

g
]

delta

Compare analytical function with SciPys RK45 approximation

Figure 3.4: Solution obtained having used RK45 without user defined calculation points

3.1. SOLVING THE ODE 42

The results above were presented by assuming LoD, AoA, TSFC to be constant. However,
for missioninformer they are not constant, but dependent on Ma, h, m. In order to see the
effect of these variables not to be constant, all available methods within SciPys ODE solver
were tested again. For testing purposes no real aerodynamic data output was used, but rather
some reasonable values, which were only dependent on m, were generated. This data set was
the input for a 1d interpolation, which is also available in SciPy. Coming to the workflow,
every time the ODE is solved, the values for the variables LoD, AoA, TSFC are obtained by
the mentioned 1d interpolation. This process can also be done with a lower or higher number
of calculation points. However, no deviation between the lower and higher number of calcu-
lation points version, could be observed.

The figures 3.5 and 3.6 show the results, when the mentioned 1d interpolation and no in-
terpolation is applied. On the left side, the default mechanism for choosing calculation points
is plotted. On the right side, the above explained user defined calculation points were used
for deriving the solution. Both sides show a deviation between the interpolation active and
inactive versions, which is called delta in the mentioned figures. Figure (3.5) shows a strange
and unexpected behavior in its delta. This is explained as follows. The number of calculation
points for the active and inactive with the defaults’ method to define calculation points is not
equal. In the inactive interpolation version, the default option for defining calculation points
requires less calculation points. However, for calculating delta, both number of calculation
points mus be equal, to be valid. Therefore, the delta on the left side can not be considered
to be correct.

This observation tells us, that LSODA is more flexible in increasing the number of calcula-
tion points than RK45. This can bee seen by viewing the delta on the left side of the figure
3.6. Here, a monotonically increasing delta can be identified. The default version of RK45
took less than 20 calculation points, whereas LSODA required around 60 calculation points.

3.1. SOLVING THE ODE 43

0 2 4 6

range [m] ×106

0

10000

20000

30000

40000

50000

60000

70000

re
q
u

ir
ed

fu
el

m
as

s
(m

c
r
)

[k
g]

Default with Interpolation

Default without interpolation

Default Delta

0 2 4 6

range [m] ×106

0

10000

20000

30000

40000

50000

60000

70000

re
q
u

ir
ed

fu
el

m
as

s
(m

c
r
)

[k
g]

User with Interpolation

User without interpolation

User Delta

Interpolated (LoD,AoA, TSFC) based on new current total mass vs non interpolated - LSODA

Figure 3.5: Solution obtained having used LSODA with and without user defined calculation
points and active and inactive interpolation

0 2 4 6

range [m] ×106

0

10000

20000

30000

40000

50000

60000

70000

re
q
u

ir
ed

fu
el

m
as

s
(m

c
r
)

[k
g]

Default with Interpolation

Default without interpolation

Default Delta

0 2 4 6

range [m] ×106

0

10000

20000

30000

40000

50000

60000

70000

re
q
u

ir
ed

fu
el

m
as

s
(m

c
r
)

[k
g]

User with Interpolation

User without interpolation

User Delta

Interpolated (LoD,AoA, TSFC) based on new current total mass vs non interpolated - RK45

Figure 3.6: Solution obtained having used RK45 with and without user defined calculation
points and active and inactive interpolation

3.1. SOLVING THE ODE 44

Comparing LSODA with RK45 directly can be done via figure 3.7. Important for present
concern is the right side, where the blue and orange graphs are the objects of our focus.
However, the blue graph is not visible. The reason for that is, that is has been draw before
the orange graph has been drawn. Therefore, the blue graph is beneath the covering orange
graph. With this it can be said, no noticeable deviation in the results for active interpolation
by having defined a ridiculously high number of calculation points can be seen. This leads to
the following conclusion. No real difference in the accuracy of LSODA and RK45 is exhibited,
however, LSODA requires more calculation points. As a consequence of this, RK45 can be
chosen as the default method to solve the ODE in the missioninformer.

0 2 4 6

range [m] ×106

0

10000

20000

30000

40000

50000

60000

70000

re
q
u

ir
ed

fu
el

m
as

s
(m

c
r
)

[k
g]

User without interpolation - RK45

Default without interpolation - RK45

User without interpolation - LSODA

Default without interpolation - LSODA

0 2 4 6

range [m] ×106

0

10000

20000

30000

40000

50000

60000

70000

re
q
u

ir
ed

fu
el

m
as

s
(m

c
r
)

[k
g]

User with interpolation - RK45

Default with interpolation - RK45

User with interpolation - LSODA

Default with interpolation - LSODA

Compare RK45 with LSODA

Figure 3.7: Direct compare RK45 with LSODA for in/active and default/user versions

3.2. CONDUCTING A STEP-SIZE-STUDY 45

3.2 Conducting a step-size-study

In section 2.6.2 the reasons for the necessity of a step-size investigation has been described.
In short it can be said, a wrong chosen step-size leads to not useable gradient values for the
optimization. In this section the results of the performed step-size study shall be shown and
elaborated. In order to calculate the gradients using different step-sizes, the procedure given
in table 3.1 was employed. The left side shows the interval from which the step-sizes were
taken, on the right side, the number of evenly distributed points, which shall be used as the
step size, are given. The investigation was conducted for 2 different missions as explained in
section 2.6.2. Both missions can be seen in table 2.5. Mission 1 encountered or failed the
constraint violation check, which is explained in section 2.4. In cases, where the constraint
violation check displayed warning messages, the respective mission required a high number
of fix-point iteration. Mostly, the limit of maximal 500 allowed iterations was reached. In
contrast, mission 2 successfully passed the constraint violation check and thus no warning
messages were encountered. Also, the number of iterations were much lower.

Intervall # points

[1e−1 ; 1e−3] 20
[1e−3 ; 1e−4] 10
[1e−4 ; 1e−5] 10
[1e−5 ; 1e−6] 15
[1e−6 ; 1e−7] 15
[1e−7 ; 1e−8] 10

Table 3.1: Chosen step-sizes

Furthermore, two different values for the tolerance parameter where used for the above-
mentioned investigations. For the first examination the absolute and relative tolerance pa-
rameter [2] for the direct and indirect gradient calculation workflows, which are explained in
section 2.6.2, are set equal to 5e−5. For the second study, for the direct method, the toler-
ance parameter were set to 5e−6, which can be done since the direct method can reach finer
tolerances as explained in section 2.6.2. The CDS is computed in application for each shape
parameter. In this study, only five selected parameters were investigated. All the upcoming
results are achieved by employing SciPy ’s RBF with multiquadric as kernel, which is given
in equation (2.38), as the underlying surrogate model generator.

Note that not each analyzed result can be shown here, since the number of these would
claim too many pages. The outcomes, which describes the gained finding will be highlighted
instead. For this propose, the result will be reviewed for the direct and indirect method,
where the direct method has a tolerance parameter of 5e−6. The results are only shown for
mission 2 and for one shape parameter.

The first interesting finding is that both methods, direct and indirect, retain a so-called
plateau with respect to step size variations. In the region of the plateau, the types of er-
ror, mentioned earlier, are in balance. In other words, within the plateau, no type of error
dominates and the total value is small. In case of a too small step-size the round-off error
becomes such high, that numerical instability is the consequence. In contrast, a too large
step-size results in very high truncation error. In both cases, the result by using CDS cannot
be considered to approximate the real gradient value. This plateau was searched for, in order

3.2. CONDUCTING A STEP-SIZE-STUDY 46

to be able to make statements and recommendations about the value for the step-size. This
observation was seen in all tested cases for mission 2. The figure 3.8 and 3.9 show the plateau
for the direct and indirect method for mission 2, respectively. It can be observed, that for
both methods, direct and indirect, the plateau can bee seen around the step-size of 1e−5.
This result was found also for remaining step-size studies the different shape parameters.

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

Stepsize [-]

−1850

−1800

−1750

−1700

−1650

−1600

−1550

−1500

fu
n

ct
io

n
va

lu
e

[k
g
/m

]

Stepsize investigation, CDS, Mission 2, Direct s-par. = 0

Figure 3.8: Step-Size-Investigation, Mission 2, Shape parameter 0, Applied method: Direct,
Unequal tolerance parameter

3.2. CONDUCTING A STEP-SIZE-STUDY 47

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

Stepsize [-]

−1700

−1650

−1600

−1550

−1500

−1450

−1400
fu

n
ct

io
n

va
lu

e
[k

g
/m

]

Stepsize investigation, CDS, Mission 2, Indirect s-par. = 0

Figure 3.9: Step-Size-Investigation, Mission 2, Shape parameter 0, Applied method: Indirect,
Unequal tolerance parameter

However, a clear plateau could only be detected for mission 2. The deviation of the gradient
with changing step-size for mission 1 was in the orders of 107 kg/m and 109 kg/m. This leads
to the conclusion, when the constraint check violation is passed successfully, the step-size
of 1e−5 can be used for the CDS gradient calculation. Otherwise, when receiving warning
statements by the constraint check violation, not only can the step-size of 1e−5 not be used,
rather CDS as the method for obtaining the gradients should not be used. This because,
when no plateau can bee seen, there is no possibility to find a reasonable required step-size.

Another conclusion which can be made is by comparing the direct and indirect results.
The indirect method seems to be more stable within a broader step-size interval. Also, this
occurrence could be seen in for mission 2 for all tested shape parameters. Note the scaling of
the y-axis, which defined as 3 times the standard deviation. With this in mind the stability
of the gradient by changing the step-size within the plateau becomes more tangible.

As summary, it can be stated that the iterative indirect method was found to be more stable
and choosing the step-size of 1e−5 could be proven to be optimal. This value neither leads to
numerical instabilities nor does it not comply with the accuracy requirements. Therefore, the
default method for solving the gradients with respect to the shape parameters is the indirect
method with its default step-size of 1e−5.

3.3. SURROGATE MODELS 48

3.3 Surrogate models

In this section different surrogate models, which are listed in section 2.5, will be explored
with regard to their respective options. For generating the RBF surrogate model SciPy was
used with its default kernel multiquadtratic, which is given in section 2.5.1 in equation (2.38).
Therefore, a smooth value [3] of 0.1 was employed, which means regression is performed. Note
for further reading, when the word RBF is mentioned, it always means Scipy’ s RBF. Krig-
ing surrogate models were generated by invoking SMARTy. Here the chosen default Kriging
kernel was Gaussian, Augmentation and regularization were set to 1 and True, respectively.
The training samples for generating the surrogate models were provided by the DLR’s anal-
ysis and optimization workflow FSAerOpt [25]. It is able to calculate fully trimmed states
and consistent adjoint based gradients involving the flow solver TAU. A total of 38 training
samples distributed in the Ma, h, m space using the Halton Design Of Experiments (DOE)
method, which are re depicted in the figures 3.10 to 3.12, were provided for this and the
upcoming surrogate models studies.

Figure 3.10: Halton DOE for half mass and
Mach number (m/2, Ma)

Figure 3.11: Halton DOE for half mass and
altitude (m/2, h)

Figure 3.12: Halton DOE for Mach number and altitude (Ma, h)

3.3. SURROGATE MODELS 49

The input for the surrogate model is 3 dimensional, meaning Mach numbers, altitudes
and masses Ma, h, m are provided. With this set of input variables the desired predicted
outcome for the output variables LoD, AoA, TSFC are generated. Note that the output vari-
ables are called LoD, AoA, TSFC , but their respective interpolated values are denoted as

˜LoD, ˜AoA, ˜TSFC . This means 3 different surrogate models are trained. Because of the 3 di-
mensional input and the 1 dimensional output, plotting the surrogate models would require
4 axes. Therefore, for showing results, plots at constant Mach numbers, altitudes and masses
(Ma, h, m) are going to be presented. Also note that the mass, when solving the ODE is
equivalent to the cruise starting mass ms .

Since more research has been done than can be showed here explicitly with figures, only
some results will be shown. This issue is understood better by highlighting the fact that
the explorations are performed for state as well as the gradients. In case of the state sur-
rogate models only 3 surrogate models are constructed. In case of the gradients, 126 shape
parameter were given, thus 126 ∗ 3 = 378 surrogate models could be presented. Additionally,
to recall, only sections where of Ma, h, m is constant can be visualized properly. Therefore,
some results, which are supposed to summarize the findings, are chosen to be displayed. The
structure of presenting the results is as follows. On the left and right side the RBF and
Kriging surrogate interpolation models are depicted for the same constant parameter of of
Ma, h, m, respectively. Therefore, interpolation models for LoD, AoA, TSFC will be given at
two different respective constant parameter values for Ma, h, m. In other words, for each
input parameter Ma, h, m, one parameter is chosen to be constant at a specific value. This
value is changed two times and isoplanes through the entire space of the interpolation models
(RBF, Kriging) are sliced and shown next to each other. In total, 6 different constant values
for each input parameter Ma, h, m were chosen. They are uniformly distributed between the
lowest and highest values of the respective input parameter (Ma, h, m).

For interpreting the figures, be reminded that the angle of attack is also often referred to
as AOA = α and note that the y-axis is equally color-coded. Figures 3.13 to 3.16 depict
the interpolation models for the constant altitude 10058.4 m and 11887.2 m, for the output
variables LoD, AoA, TSFC . In figures 3.13 and 3.14 noticeable differences in the interpolation
models for AoA can be observed. The Kriging model on the right side of depicts a smoother
transition than RBF. This observation can bee seen in all figures with a constant altitude from
3.13 to 3.24. This holds also, when varying the altitude or even the output variable. In other
words, each interpolation model for the different desired output variables LoD, AoA, TSFC
confirms this observation. A possible reason for this occurrence could be that the Kriging
value for regularization is automatically tuned in SMARTy and can be higher than the value
for SciPy ’s RBF. The answer to the question, which models predict the underlying physical
phenomenons accurately requires a deep understanding of the relationship of all the input
and output parameters and can be partly answered in subsection 3.4.1

3.3. SURROGATE MODELS 50

Figure 3.13: Surrogate interpolation model
for AoA at constant altitude
h = 10058.4 [m], RBF

Figure 3.14: Surrogate interpolation model
for AoA at constant altitude
h = 10058.4 [m], Kriging

Figure 3.15: Surrogate interpolation model
for AoA at constant altitude
h = 11887.2 [m], RBF

Figure 3.16: Surrogate interpolation model
for AoA at constant altitude
h = 11887.2 [m], Kriging

Figure 3.17: Surrogate interpolation model
for TSFC at constant altitude
h = 10058.4 [m], RBF

Figure 3.18: Surrogate interpolation model
for TSFC at constant altitude
h = 10058.4 [m], Kriging

3.3. SURROGATE MODELS 51

Figure 3.19: Surrogate interpolation model
for TSFC at constant altitude
h = 11887.2 [m], RBF

Figure 3.20: Surrogate interpolation model
for TSFC at constant altitude
h = 11887.2 [m], Kriging

Figure 3.21: Surrogate interpolation model
for LoD at constant altitude
h = 10058.4 [m], RBF

Figure 3.22: Surrogate interpolation model
for LoD at constant altitude
h = 10058.4 [m], Kriging

Figure 3.23: Surrogate interpolation model
for LoD at constant altitude
h = 11887.2 [m], RBF

Figure 3.24: Surrogate interpolation model
for LoD at constant altitude
h = 11887.24 [m], Kriging

3.3. SURROGATE MODELS 52

The figures from 3.25 to 3.32 show the interpolations models, when a cut at constant Mach
numbers is performed. Here the same effect as described above for the constant altitude
case can be observed. Kriging is smoother in the curve of its predicted values than RBF is.
However, in the case of constant Mach numbers, one more phenomena can be observed. The
actual values of for the desired output variables LoD, AoA, TSFC are different when compar-
ing RBF (left side) with Kriging (right side). This effect is clearly visible, e.g. in figures 3.29
and 3.30.

Figure 3.25: Surrogate interpolation model
for AoA at constant Ma =
0.815 [-], RBF

Figure 3.26: Surrogate interpolation model
for AoA at constant Ma =
0.815 [-], Kriging

Figure 3.27: Surrogate interpolation model
for AoA at constant Ma =
0.845 [-], RBF

Figure 3.28: Surrogate interpolation model
for AoA at constant Ma =
0.845 [-], Kriging

3.3. SURROGATE MODELS 53

Figure 3.29: Surrogate interpolation model
for LoD at constant Ma =
0.815 [-], RBF

Figure 3.30: Surrogate interpolation model
for LoD at constant Ma =
0.815 [-], Kriging

Figure 3.31: Surrogate interpolation model
for LoD at constant Ma =
0.845 [-], RBF

Figure 3.32: Surrogate interpolation model
for LoD at constant Ma =
11887.24 [m], Kriging

The figures from 3.33 to 3.44 show the interpolations models, when a cut at constant
mass is made. These are slices, where the RBF plots (left side) for the output variables
LoD, AoA, TSFC are also smooth. However, Kriging (right side) remains smooth, which
suggests, that RBF and Kriging trends must not necessarily be contradicting. The second
difference with regard to the constant Mach number and altitude slices is, that comparing
RBF (left side) and Kriging (right side) small noticeable differences in the values for the out-
put variables LoD, AoA, TSFC in the overall space can be observed. This can be seen, e.g. by
comparing figure 3.35 and 3.36. Consider the upper left corners and the whole upper edges.
Here the clear contrast in the colors and thus in the values for AoA can bee seen. These
differences, can also become extreme when comparing figures 3.43 and 3.44. Employing RBF
the values for LoD are all greater or equal to LoD ≥ 21.046. In contrast, the Kriging model
(right side) also exhibits LoD values which are around 19. This highlights, the interpolation
for LoD highly depends on the underlying surrogate interpolation model.

3.3. SURROGATE MODELS 54

Figure 3.33: Surrogate interpolation model
for AoA at constant mass m =
171000 [kg], RBF

Figure 3.34: Surrogate interpolation model
for AoA at constant mass m =
171000 [kg], Kriging

Figure 3.35: Surrogate interpolation model
for AoA at constant mass m =
245000 [kg], RBF

Figure 3.36: Surrogate interpolation model
for AoA at constant mass m =
245000 [kg], Kriging

Figure 3.37: Surrogate interpolation model
for TSFC at constant mass
m = 171000 [kg], RBF

Figure 3.38: Surrogate interpolation model
for TSFC at constant mass
m = 171000 [kg], Kriging

3.3. SURROGATE MODELS 55

Figure 3.39: Surrogate interpolation model
for TSFC at constant mass
m = 245000 [kg], RBF

Figure 3.40: Surrogate interpolation model
for TSFC at constant mass
m = 245000 [kg], Kriging

Figure 3.41: Surrogate interpolation model
for LoD at constant mass m =
171000 [kg], RBF

Figure 3.42: Surrogate interpolation model
for LoD at constant mass m =
171000 [kg], Kriging

Figure 3.43: Surrogate interpolation model
for LoD at constant mass m =
245000 [kg], RBF

Figure 3.44: Surrogate interpolation model
for LoD at constant mass
Ma = 11887.24 [m], Kriging

3.4. EVALUATING DIFFERENT SURROGATE MODELS 56

This section can be concluded with the following. Clearly, there are differences in the
outcome of the predicted values and trends for the desired output variables LoD, TSFC , AOA.
As a consequence, once more it can be said that the choice of the surrogate model heavily
determines the results of any further calculation.

3.4 Evaluating different surrogate models

In this section the different surrogate models Kriging (Gaussian), TPS and RBF are explored,
which are all described in section 2.5. Since most explanations for the upcoming explorations
were given in subsection 2.5.3, only necessary details will be repeated. The two missions
which are going to be used for the following investigations are shown in table 2.3. Both mis-
sions passed the constraints check violation successfully and thus the number of the fix point
iterations for calculating the gradients is low. The table 3.2 shows the options for Kriging
and TPS and SciPys RBF. For all SciPys RBF kernels a smooth value of 0.1 [3] was used.
More information about the settings and kernel is given in section 2.5.

SMARTy Kriging and TPS SciPy

Name Augmentation Regularization RBF Kernel

A −1 False multiquadric
B 0 False inverse
C +1 False gaussian
D +2 False linear
E −1 True cubic
F 0 True thin plate
G +1 True -
H +2 True -

Table 3.2: Kriging, TPS and RBF parameter used for investigation surrogate quality

Similarly to the results sections before, much research has been done. However, not all
results can be shown, rather results which are supposed to sum the found results up will be
shown and elaborated. Recall, 35 effective or fully trimmed sample points were given as the
input data for training the surrogate models. The investigations were performed for state and
gradients as well. In subsection 2.5.3 three different versions were introduced, V38,V28 and
V18, where each version only effectively have three less sample points than its declarations
name. According to subsection 2.5.3 for V38 the Leave-one-out cross-validation is applied.
Whereas for V28 and V18 the Root Mean Square Error (RMSE) is calculated by having 10
and 20 additional sample points, respectively. For this additional sample points the true
value of output variables AoA, LoD, TSFC and their gradients is known.

The first exploration, which will be considered is by using the 38 sample data (effective 35
trimmed samples). For this V38, the total missions fuel mass mf , the cruise fuel weight mcr

and the cruise starting mass ms were monitored. However, since only for the cruise segment
a physical based equation is applied, it is sufficient to only portray the curve of the total
fuel mass mf with the different surrogate models. As concluded in section 3.2, the indirect
method is preferred to the direct method. Therefore, the indirect method is used in order
to perform this surrogate investigation. Figure 3.45 and 3.46 exhibit the total fuel mass mf

3.4. EVALUATING DIFFERENT SURROGATE MODELS 57

of mission 1, by employing Kriging and TPS, respectively. Figures 3.47 and 3.48 show the
same for mission 2. The horizontal axis gives information about the chosen model intern
parameter, which can be read from table 3.2. In both cases it can be observed, changing
the model intern parameter does have an impact of the outcome (mf). For both surrogate
models with their different options the deviation is less than 260 kilogram. In case of Kriging
and TPS in figures 3.45 and 3.48, respectively it is only 25 kilogram. Such a deviation is
considered to be acceptable.

A B C D E F G H

Different methods

64505

64510

64515

64520

64525

64530

F
u

el
w

ei
gh

t
[k

g
]

Mission 1 - Kriging - Fuel weight

Figure 3.45: Final mission fuel weight mf ,
Mission 1, Kriging variants

A B C D E F G H

Different methods

64250

64300

64350

64400

64450

64500

F
u

el
w

ei
gh

t
[k

g
]

Mission 1 - TPS - Fuel weight

Figure 3.46: Final mission fuel weight mf ,
Mission 1, TPS variants

A B C D E F G H

Different methods

38855

38860

38865

38870

38875

38880

F
u

el
w

ei
g
h
t

[k
g]

Mission 2 - Kriging - Fuel weight

Figure 3.47: Final mission fuel weight mf ,
Mission 2, Kriging variants

A B C D E F G H

Different methods

38800

38820

38840

38860

38880

38900

F
u

el
w

ei
g
h
t

[k
g]

Mission 2 - TPS - Fuel weight

Figure 3.48: Final mission fuel weight mf ,
Mission 2, TPS variants

Figures 3.49 to 3.52 exhibits the number of the fix point iterations, which were required
for only mass calculation for the states, as explained in section 2.4. It can be seen that in
no event more than 4 state fix point iterations are required. The difference between the
gradient and the state fix point iterations can be simplified as follows. The gradient fix point
iterations number is approximately twice as high as the state version. This is so, because the
CDS evaluates the functions value at two points, thus the state fix point iteration is run twice.

Figures 3.53 to 3.56 depict the same kind of study for RBF and its options. It can be
observed, that RBF predictions highly depend on the chosen kernel. Also, the number of the
state fix point iterations are much higher. Figures 3.57 and 3.58 show a comparison with all
surrogate models and their options for mission 1 and 2, respectively. It can be seen, that only

3.4. EVALUATING DIFFERENT SURROGATE MODELS 58

in case of mission 1, depending on RBF’s kernel a match with Kriging and TPS occurs. In
general, it can be stated that the SciPy RBF’s output is noticeably different to SMARTy ’s
Krigings and TPS output. However, Krigings and TPS output exhibit a comparatively low
deviation. Furthermore, it can be said that RBF has a much higher demand of state fix point
iterations, which makes is unfeasible for application purposes.

A B C D E F G H

Different methods

3.80

3.85

3.90

3.95

4.00

4.05

4.10

4.15

4.20

N
u

m
b

er
o
f

It
er

a
ti

on
[-

]

Mission 1 - Kriging - Number of iterations

Figure 3.49: Number of the state fix-point
iterations, Mission 1, Kriging
variants

A B C D E F G H

Different methods

3.80

3.85

3.90

3.95

4.00

4.05

4.10

4.15

4.20

N
u

m
b

er
of

It
er

a
ti

o
n

[-
]

Mission 1 - TPS - Number of iterations

Figure 3.50: Number of the state fix-point,
Mission 1, TPS variants

A B C D E F G H

Different methods

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

N
u

m
b

er
of

It
er

at
io

n
[-

]

Mission 2 - Kriging - Number of iterations

Figure 3.51: Number of the state fix-point
iterations, Mission 2, Kriging
variants

A B C D E F G H

Different methods

3.80

3.85

3.90

3.95

4.00

4.05

4.10

4.15

4.20

N
u

m
b

er
of

It
er

at
io

n
[-

]

Mission 2 - TPS - Number of iterations

Figure 3.52: Number of the state fix-point,
Mission 2, TPS variants

3.4. EVALUATING DIFFERENT SURROGATE MODELS 59

A B C D E F

Different methods

0

10000

20000

30000

40000

50000

60000

F
u

el
w

ei
gh

t
[k

g]
Mission 1 - RBF - Fuel weight

Figure 3.53: Final mission fuel weight mf ,
Mission 1, RBF variants

A B C D E F

Different methods

5000

10000

15000

20000

25000

30000

35000

40000

F
u

el
w

ei
gh

t
[k

g]

Mission 2 - RBF - Fuel weight

Figure 3.54: Final mission fuel weight mf ,
Mission 2, RBF variants

A B C D E F

Different methods

0

100

200

300

400

500

N
u

m
b

er
of

It
er

at
io

n
[-

]

Mission 1 - RBF - Number of iterations

Figure 3.55: Number of state fix point it-
erations, Mission 1, Kriging
variants

A B C D E F

Different methods

0

100

200

300

400

500

N
u

m
b

er
of

It
er

at
io

n
[-

]

Mission 2 - RBF - Number of iterations

Figure 3.56: Number of state fix point it-
erations, Mission 2, TPS vari-
ants

A B C D E F G H

Different methods

0

10000

20000

30000

40000

50000

60000

F
u

el
w

ei
gh

t
[k

g]

Mission 1 - Compare: Kriging, TPS, RBF

Kriging

TPS

RBF

Figure 3.57: Total fuel mass mf for all sur-
rogate models, Mission 1

A B C D E F G H

Different methods

10000

20000

30000

40000

50000

60000

F
u

el
w

ei
gh

t
[k

g]

Mission 2 - Compare: Kriging, TPS, RBF

Kriging

TPS

RBF

Figure 3.58: Total fuel mass mf for all sur-
rogate models, Mission 2

The next step is to consider the effect of a decreasing number of training samples and
its effect on the surrogate models. This is done only for Kriging and TPS, since SciPy ’s
RBF showed a too high sensitivity on the chosen kernel and also required too many fix point

3.4. EVALUATING DIFFERENT SURROGATE MODELS 60

iterations. Kriging and TPS have the same 8 options. The total fuel mass mf is plotted in
the figures 3.59 to 3.62. Comparing mf for mission 1 with Kriging and TPS via figures 3.59
and 3.60, respectively, the following can be observed. The vertical scaling axis of Kriging
is finer, which means, a high change on the left figure results in a low change on the right
figure (TPS). The maximum difference in the version which could occur for Kriging is 350 kg
and for TPS is 1600 kg. Therefore, the absolute deviation needs to be calculated, which are
shown in figures 3.61 and 3.62 for Kriging and TPS, respectively. In the mentioned figures,
the green and red curves are more interesting to us, since it is assumed that V38 is the most
accurate version and thus is considered as the basis. For mission 1, Kriging V18 and V28 are
clearly closer to V38. In other words, Kriging tends to deliver with fewer data results closer
to the fine sampling outputs than TPS. In case Kriging would also be the most accurate
method (see subsection 3.4.1), it could be preferred for training surrogate models with a
fewer number of training data.

A B C D E F G H

Different methods

64400

64450

64500

64550

64600

64650

64700

64750

F
u

el
w

ei
g
h
t

[k
g]

Mission 1: Kriging all versions

V18

V28

V38

Figure 3.59: Total fuel mass mf for all Ver-
sions, Mission 1, Kriging

A B C D E F G H

Different methods

63000

63200

63400

63600

63800

64000

64200

64400

64600

F
u

el
w

ei
g
h
t

[k
g]

Mission 1: TPS all versions

V18

V28

V38

Figure 3.60: Total fuel mass mf for all Ver-
sions, Mission 1, TPS

A B C D E F G H

Different methods

0

50

100

150

200

250

300

350

F
u

el
w

ei
g
h
t

[k
g
]

Mission 1: Deviation kriging all versions

dev1 = |V18 − V28|
dev2 = |V18 − V38|
dev3 = |V28 − V38|

Figure 3.61: Deviations of the different
versions of mf , Mission 1,
Kriging

A B C D E F G H

Different methods

0

200

400

600

800

1000

1200

F
u

el
w

ei
gh

t
[k

g]

Mission 1: Deviation TPS all versions

dev1 = |V18 − V28|
dev2 = |V18 − V38|
dev3 = |V28 − V38|

Figure 3.62: Deviations of the different
versions of mf , Mission 1,
TPS

The same also must be tested for mission 2. The results are presented in figures 3.63 to
3.66. The observations made for mission 1 are confirmed by having investigated on mission
2.

3.4. EVALUATING DIFFERENT SURROGATE MODELS 61

A B C D E F G H

Different methods

38500

38600

38700

38800

38900

F
u

el
w

ei
gh

t
[k

g]
Mission 2: Kriging all versions

V18

V28

V38

Figure 3.63: Total fuel mass mf for all Ver-
sions, Mission 2, Kriging

A B C D E F G H

Different methods

38400

38600

38800

39000

39200

39400

39600

F
u

el
w

ei
gh

t
[k

g]

Mission 2: TPS all versions

V18

V28

V38

Figure 3.64: Total fuel mass mf for all Ver-
sions, Mission 2, TPS

A B C D E F G H

Different methods

0

50

100

150

200

250

300

350

400

F
u

el
w

ei
gh

t
[k

g]

Mission 2: Deviation kriging all versions

dev1 = |V18 − V28|
dev2 = |V18 − V38|
dev3 = |V28 − V38|

Figure 3.65: Deviations of the different
versions of mf , Mission 2,
Kriging

A B C D E F G H

Different methods

0

200

400

600

800

F
u

el
w

ei
gh

t
[k

g]

Mission 2: Deviation TPS all versions

dev1 = |V18 − V28|
dev2 = |V18 − V38|
dev3 = |V28 − V38|

Figure 3.66: Deviations of the different
versions of mf , Mission 2,
TPS

Up to now, only state solutions were discussed. However, the whole investigation process
was also done for the gradients. Since the gradient investigation does not lead to further
findings, only the most important results will be shown. Furthermore, only mission 1 is dis-
played as a representation of both missions The figures 3.67 and 3.68 depict the mean curve
of the gradient of the total fuel masses w.r.t. all shape parameter. Mean curve means, that
the results of the 8 options were used for calculating their respective mean values.

3.4. EVALUATING DIFFERENT SURROGATE MODELS 62

0 20 40 60 80 100 120

Shape parameter

−7500

−5000

−2500

0

2500

5000

7500

M
ea

n
:

F
u

el
m

as
s

gr
ad

ie
n
t

[k
g/

m
]

Miss 1: Mean - Gradients fuel mass w.r.t. shape parameters using Kriging

V18

V28

V38

Figure 3.67: Total fuel mass gradients
w.r.t. shape parameters, All
versions, Mission 1, Kriging

0 20 40 60 80 100 120

Shape parameter

−10000

−7500

−5000

−2500

0

2500

5000

7500

M
ea

n
:

F
u

el
m

a
ss

g
ra

d
ie

n
t

[k
g/

m
]

Miss 1: Mean - Gradients fuel mass w.r.t. shape parameters using TPS

V18

V28

V38

Figure 3.68: Total fuel mass gradients
w.r.t. shape parameters, All
versions, Mission 1, TPS

Next, the required execution time by having chosen the different surrogate models is going
to be displayed. It is measured right after invoking missioninformer till the state and gradi-
ents for both missions were computed entirely and stored to the hard disk. In other words,
it is the execution time of missioninformer itself, which is measured with different surrogate
models. The results are depicted in figure 3.69. It can be observed that the Kriging versions
are also more stable in the run time than TPS. The impact of different Kriging options does
not have high impact of its execution time. TPS on the other hand, can be a little faster
than Kriging with some options, however also can be much slower with other options. Also,
depending on the sample data size, a high deviation can be observed, when regularization is
activated (E to H).

A B C D E F G H

Method

100

200

300

400

500

600

700

800

ti
m

e
[s

ec
]

Execution time in total - Both mission combined

VKr,18

VKr,28

VKr,38

VTPS,18

VTPS,28

VTPS,38

Figure 3.69: Missioninformers execution time with different surrogate models

3.4. EVALUATING DIFFERENT SURROGATE MODELS 63

3.4.1 Kriging and TPS accuracy

The objective of this subchapter is to present quantifiable information about the accuracy
of Kriging and TPS models depending on their user-defined options. The question is, which
model and which option leads to the lowest RMSE. The answer to this question is found
using SMARTy ’s automated model selection capability. The workflow for this purpose was
repeated shortly in the introduction of this section and is given in more detail in subsection
2.5.3. Therefore, the results shall be presented straight forward. On the left side the best
option set for the state is given. Here also the declaration of the 16 tested models is provided,
which is valid for the gradient investigation, depicted on the right side, as well. For the state
calculation, only three surrogate models ˜LoD, ˜AoA, ˜TSFC are generated. Therefore, out of
the total 16 options for each of the three different surrogate models, only one offers the least
RMSE. Therefore, for the states, each option only once can be found to be the best. In
contrast, the gradient has multiple shape parameters and each shape parameter has his own
best option. Due to this, one option can be found to have the least value of RMSE multiple
times per associated output parameter LoD, AoA, TSFC .

The figure 3.70, 3.72 and 3.74 depict the state version for V18, V28 and V38 respectively.
The figures 3.71, 3.73 and 3.75 their respective gradient version. Each figure on the left side
contains a legend, which is valid for both sides. A clear distriction between Kriging and TPS
models can be made with the letters A - H and I-P, respectively. Unfortunately, no abso-
lutely clear winner can be filtered out of these results. The distributions are too different for
this purpose. However, a suggestion can still be made by starting with options, which should
not be taken into consideration. Viewing all the gradient results (right side), options C, I,
J, K and L show the least number of best RMSE values. Also, the same options were not
found to be the best choice for the states. The option A is also not to be found as the best
choice for states nor does it have a good result for the gradients for V18 and V28. Option A
is clearly no suggestion, but does not perform as bad as the other options mentioned before.
The remaining possible options are: B, D, E, F, G, H, L, M, N, O and P. From these options
F, H, M and N exhibit the best state results. These are 2 Kriging and 2 TPS models. 3 out
of these 4 models include regularization and have the augmentation value of 1. From here
on, the most appealing option by including the gradients, is option N. Furthermore, figures
3.62 and 3.66 should be considered in this examination. They depict the deviation for the
different versions (V18, V28, V38) for SMARTy ’s TPS with an augmentation of −1. For
both missions the deviation is high. This option is declared as J in the figures 3.70 and 3.75
and also here, unsatisfactory results are found.

In conclusion, it can be said, no real winner could be found out for the options. However,
using regularization and an augmentation of value 1 can be recommended. If a final decision
had to be made, option N, the TPS model with regularization and an augmentation of 1
should be chosen. Note that performing this model selection study took more than 3 days
on the workstation described in section 1.1. This means performing model selection for each
new set of training samples within an aerodynamic optimization is not feasible. Therefore,
TPS with active regularization and an augmentation of 1 is set as the default model in
missioninformer.

3.4. EVALUATING DIFFERENT SURROGATE MODELS 64

A B C D E F G H I J K L M N O P

Method

0.0

0.2

0.4

0.6

0.8

1.0

N
u

m
b

er
of

o
cc

u
rr

en
ce

A = K/-1/0
B = K/-1/1
C = K/0/0
D = K/0/1
E = K/1/0
F = K/1/1
G = K/2/0
H = K/2/1
I = T/-1/0
J = T/-1/1
K = T/0/0
L = T/0/1
M = T/1/0
N = T/1/1
O = T/2/0
P = T/2/1

State version: 18

LoD

AoA

TSFC

Figure 3.70: Lowest RMSE by having com-
pared Krigings and TPS 8 op-
tions, state V18

A B C D E F G H I J K L M N O P

Method

0

5

10

15

20

25

N
u

m
b

er
of

o
cc

u
rr

en
ce

Gradient version: 18

dLoD

dAoA

dTSFC

Figure 3.71: Lowest RMSE by having com-
pared Krigings and TPS 8 op-
tions, gradient V18

A B C D E F G H I J K L M N O P

Method

0.0

0.2

0.4

0.6

0.8

1.0

N
u

m
b

er
of

o
cc

u
rr

en
ce

A = K/-1/0
B = K/-1/1
C = K/0/0
D = K/0/1
E = K/1/0
F = K/1/1
G = K/2/0
H = K/2/1
I = T/-1/0
J = T/-1/1
K = T/0/0
L = T/0/1
M = T/1/0
N = T/1/1
O = T/2/0
P = T/2/1

State version: 28

LoD

AoA

TSFC

Figure 3.72: Lowest RMSE by having com-
pared Krigings and TPS 8 op-
tions, state V28

A B C D E F G H I J K L M N O P

Method

0

5

10

15

20

25

30

35

N
u

m
b

er
o
f

o
cc

u
rr

en
ce

Gradient version: 28

dLoD

dAoA

dTSFC

Figure 3.73: Lowest RMSE by having com-
pared Krigings and TPS 8 op-
tions, gradient V28

A B C D E F G H I J K L M N O P

Method

0.0

0.2

0.4

0.6

0.8

1.0

N
u

m
b

er
of

o
cc

u
rr

en
ce

A = K/-1/0
B = K/-1/1
C = K/0/0
D = K/0/1
E = K/1/0
F = K/1/1
G = K/2/0
H = K/2/1
I = T/-1/0
J = T/-1/1
K = T/0/0
L = T/0/1
M = T/1/0
N = T/1/1
O = T/2/0
P = T/2/1

State version: 38

LoD

AoA

TSFC

Figure 3.74: Lowest RMSE by having com-
pared Krigings and TPS 8 op-
tions, state V38

A B C D E F G H I J K L M N O P

Method

0

5

10

15

20

25

30

35

40

N
u

m
b

er
of

o
cc

u
rr

en
ce

Gradient version: 38

dLoD

dAoA

dTSFC

Figure 3.75: Lowest RMSE by having com-
pared Krigings and TPS 8 op-
tions, gradient V38

4 Discussion

The missioninformer, a tool, was proposed to help to fulfill the environmental demands for
reducing air traffic pollution. Clearly, the aircraft sector contributed and contributes to the
current environmental crisis which we are facing. Since an aircraft has become indispensable,
not only for the individual, but also for the global economy, the solution for a healthier envi-
ronment cannot be banning aircraft, but rather improving it with regard to CO2, NOx and
SO2 emissions. The missioninformer, a lightweight tool was written from scratch. Its major
task is to calculate the consumed fuel for one or multiple individual missions for one aircraft.
For the most important part of the mission, the cruise segment, physics-based equations are
applied. In section 2.3 they are introduced, the precision with which they are solved is sat-
isfactory and is presented in section 3.1. They are fed with interpolated aerodynamic data,
where the interpolation models were generated by using high fidelity RANS-based training
samples.

The next step missioninformer went, was also to include the remaining flight segments by
employing fuel fractions. All the used fuel fractions were given in section 2.2 in table 2.1.
At this stage, the missioninformer can predict the fuel required for a whole flight mission.
For real world applications, the user must be able to define the flown mission himself. The
missioninformer meets that need and in a structured way, so less effort is required, which is
described in section 1.3

Since the missioninformer is a leightweight code and because it can be used as a black box,
it already can be implemented easily into a global gradient free optimization workflow. Since
gradient-based optimization is known to be faster, especially with a high number of design
variables, missioninformer was enhanced with the ability to calculate gradients. These are
gradients of the fuel mass of the whole flight mission with respect to all arbitrarily given
shape parameters. To guarantee a high accuracy of missioninformer ’s state and gradient
solutions many different studies were conducted.

In order to solve the ODE for the cruise flight segment, two tested solvers exhibited par-
ticular high accuracies in their results. One of them (RK45) also demanded few integration
steps and thus excels in terms of execution time. Therefore, (RK45) is well suited for research
and industrial applications. Based on this reasoning it is used as a standard ODE solver.

For the gradient calculation, by employing central differencing, it can be stated that the
iterative indirect method was found to be more stable. Also, choosing the step-size of 1e−5
could be proven to be optimal. This value neither leads to numerical instabilities nor does
it not comply with the accuracy requirements. Therefore, the default method for solving
the gradients with respect to the shape parameters is the indirect method with its default
step-size of 1e−5.

Having compared SciPy ’s RBF and SMARTy ’s Kriging (Gaussian) and TPS interpolation

65

66

models for different model options, the following can be stated. Clearly, there are differ-
ences in the outcome of the predicted values and trends for the desired output variables
LoD, TSFC , AOA. As a consequence, once more it can be said that the choice of the surrogate
model heavily determines the results of any further calculation.

After having performed a computational intensive model selection investigation, the fol-
lowing conclusion is made. No real winner could be found out for the options. However,
using regularization and an augmentation of value 1 can be recommended. If a final deci-
sion had to be made, the TPS model with regularization and an augmentation of 1 should
be chosen. Note that performing this model selection study took more than 3 days on the
workstation described in section 1.1. This means performing model selection for each new set
of training samples within an aerodynamic optimization is not feasible. Therefore, TPS with
active regularization and an augmentation of 1 is set as the default model in missioninformer.

For the sake of applicational feasibility, execution time for the missioninformer with dif-
ferent surrogate models and their respective different intern parameters was measured. With
that it can be stated, the missioninformer suits well for a fast and easy implementation into
a gradient-based and gradient-free optimization workflow, where it completes its calculation
within few minutes. Having introduced the missioninformer broadly, it clearly can be consid-
ered as a possible tool at hand to be integrated into new digital design methods to reduce the
negative impact of aviation on the environment, which can not be neglected nor overlooked.

5 Conclusions and outlook

A tool for calculating the total fuel mass and its gradient w.r.t. arbitrary shape parameter
and for any user defined mission or multiple missions is presented. It was generated from
scratch and can be used as black box. It could be observed, that in case of two missions,
the runtime was between 50 to 800 seconds (figure 3.69) depending on the employed inter-
polation models and including the gradient computation. The following surrogate models
were intensively investigated with different options: RBF from the SciPy library, Kriging
(Gaussian) and TPS from DLR’s toolbox SMARTy. RBF could clearly be filtered out from
the list of the attractive surrogate model options, mainly due to its long execution times and
highly options dependent results. In order to solve the ODE, which is required for comput-
ing the fuel fraction of the cruise segment, different numerical solvers were used. By having
applied simplifications an analytical solution of the ODE was introduced. The analytical
solution was compared with different numerical solvers solutions. With these comparisons,
statements about the accuracy of the numerical ODE solver could be made. The solution of
the total fuel mass incorporates mass snowball effects though the explained fix-point itera-
tion. For the gradients, also an analytical approach was desired. However, after comparing
the analytically determined gradients with central finite differences results, the assumption
was made for the derivation were found to be not tenable. A detailed analysis for finding
an appropriate value for the step-size of the central differencing scheme was undertaken. Its
results could be shown to be unambiguous.

As an outlook, the analytical solution for the gradients should be revisited. It failed due to
the elaboration of the mass term. It is assumed that there is a way to reformulate this term
and thus obtain the gradients analytically. An alternative could be employing automatic
differentiation. Up to now, only the most important flight segment, the cruise segment is
described by equations which are based on physical observations. The currently used fuel
fractions for the other flight segments could be replaced by physics-based equations as well.
Also in practice, step-climbs are performed in order to fly with an optimal LoD. This means,
the assumption of constant altitude, which is made in missioninformer needs to be adapted.
Next, state and gradient calculations are not consistent due to the chosen approach with
multiple independent surrogate models. Missioninformer should be tested in an aerodynamic
gradient-based optimization to find out how many training points are necessary to achieve
significant reduction in the missions fuel consumption. Finally, the gradients of the missions
fuel w.r.t. the structural mass needs to be calculated in order to use missioninformer within
a multi-disciplinary-optimization workflow.

67

Bibliography

[1] Homepage - SUAVE, 2021.

[2] NumPy’s allclose, August 2021.

[3] RBF - SciPy, August 2021.

[4] SciPy’s ODE solver, August 2021.

[5] M. Ahmed and N. Qin. Surrogate-Based Aerodynamic Design Optimization: Use of
Surrogates in Aerodynamic Design Optimization. International Conference on Aerospace
Sciences and Aviation Technology, 13(AEROSPACE SCIENCES):1–26, May 2009.

[6] John T Betts. Survey of numerical methods for trajectory optimization. Journal of
guidance, control, and dynamics, 21(2):193–207, 1998.

[7] Benoit Dabas, Nathalie Bartoli, Thierry Lefebvre, Francois Gallard, Anne Gazaix,
Thierry Y. Druot, and Damien Guénot. Error-Based Adaptive Coupling Process Be-
tween Multipoint High-Fidelity Aerodynamics and Mission Performance for Shape Op-
timization in the MDA-MDO Project. In AIAA Aviation 2019 Forum, Dallas, Texas,
June 2019. American Institute of Aeronautics and Astronautics.

[8] Michael Eldred, Anthony Giunta, and S. Collis. Second-Order Corrections for Surrogate-
Based Optimization with Model Hierarchies. In 10th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, Albany, New York, August 2004. American In-
stitute of Aeronautics and Astronautics.

[9] Richard C Feagin and William D Morrison. Delta method, an empirical drag buildup
technique. 1978.

[10] Stefan Goertz, Mohammad Abu-Zurayk, Caslav Ilic, Tobias F. Wunderlich, Stefan Keye,
Matthias Schulze, Christoph Kaiser, Thomas Klimmek, Özge Süelözgen, Thiemo Kier,
Andreas Schuster, Sascha Daehne, Michael Petsch, Dieter Kohlgrüber, Jannik Häßy,
Robert Mischke, Alexander Weinert, Philipp Knechtges, Sebastian Gottfried, Johannes
Hartmann, and Benjamin Fröhler. Overview of Collaborative Multi-Fidelity Multidisci-
plinary Design Optimization Activities in the DLR Project VicToria. In AIAA AVIA-
TION 2020 FORUM, VIRTUAL EVENT, June 2020. American Institute of Aeronautics
and Astronautics.

[11] Justin S. Gray, John T. Hwang, Joaquim R. R. A. Martins, Kenneth T. Moore, and
Bret A. Naylor. OpenMDAO: an open-source framework for multidisciplinary design,
analysis, and optimization. Structural and Multidisciplinary Optimization, 59(4):1075–
1104, April 2019.

[12] EM Greitzer. Design Methodologies for Aerodynamics, Structures, Weight, and Ther-
modynamic Cycles. Cooperative Agreement No. NNX08AW63A, 2010.

68

Bibliography 69

[13] S. Görtz, \textbackslashvC Ilić, M. Abu-Zurayk, R. Liepelt, J. Jepsen, T. Führer,
R. Becker, J. Scherer, T. Kier, and M. Siggel. Collaborative Multi-Level MDO Pro-
cess Development and Application to Long-Range Transport Aircraft. 2016.

[14] Caslav Ilic. Goal function in Digital-X. Braunschweig, Germany, September 2013. DLR.

[15] Jason Y. Kao, John T. Hwang, Joaquim R. R. A. Martins, Justin S. Gray, and Ken-
neth T. Moore. A Modular Adjoint Approach to Aircraft Mission Analysis and Opti-
mization. In Proceedings of the AIAA Science and Technology Forum and Exposition
(SciTech), Kissimmee, FL, January 2015.

[16] Daniel G Krige. A statistical approach to some basic mine valuation problems on the
Witwatersrand. Journal of the Southern African Institute of Mining and Metallurgy,
52(6):119–139, 1951. Publisher: Southern African Institute of Mining and Metallurgy.

[17] D.S. Lee, D.W. Fahey, A. Skowron, M.R. Allen, U. Burkhardt, Q. Chen, S.J. Doherty,
S. Freeman, P.M. Forster, J. Fuglestvedt, A. Gettelman, R.R. De León, L.L. Lim, M.T.
Lund, R.J. Millar, B. Owen, J.E. Penner, G. Pitari, M.J. Prather, R. Sausen, and L.J.
Wilcox. The contribution of global aviation to anthropogenic climate forcing for 2000 to
2018. Atmospheric Environment, 244:117834, January 2021.

[18] Rhea P. Liem, Gaetan K. W. Kenway, and Joaquim R. R. A. Martins. Multimission
Aircraft Fuel-Burn Minimization via Multipoint Aerostructural Optimization. AIAA
Journal, 53(1):104–122, January 2015.

[19] Rhea P. Liem, Charles A. Mader, Edmund Lee, and Joaquim R. R. A. Martins.
Aerostructural design optimization of a 100-passenger regional jet with surrogate-based
mission analysis. In 2013 Aviation Technology, Integration, and Operations Conference,
Los Angeles, CA, August 2013. American Institute of Aeronautics and Astronautics.

[20] Rhea P. Liem, Charles A. Mader, and Joaquim R.R.A. Martins. Surrogate models and
mixtures of experts in aerodynamic performance prediction for aircraft mission analysis.
Aerospace Science and Technology, 43:126–151, June 2015.

[21] Joaquim R. R. A. Martins and John T. Hwang. Review and Unification of Methods
for Computing Derivatives of Multidisciplinary Computational Models. AIAA Journal,
51(11):2582–2599, November 2013.

[22] Georges Matheron. Principles of geostatistics. Economic geology, 58(8):1246–1266, 1963.
Publisher: Society of Economic Geologists.

[23] LA McCullers. Aircraft configuration optimization including optimized flight profiles.
1984.

[24] Martin Meckesheimer, Andrew J. Booker, Russell R. Barton, and Timothy W. Simp-
son. Computationally Inexpensive Metamodel Assessment Strategies. AIAA Journal,
40(10):2053–2060, October 2002.

[25] Andrei Merle, Caslav Ilic, Mohammad Abu-Zurayk, Jannik Häßy, Richard-Gregor
Becker, Matthias Schulze, and Thomas Klimmek. High-Fidelity Adjoint-based Aircraft
Shape Optimization with Aeroelastic Trimming and Engine Coupling. September 2019.

Bibliography 70

[26] Ruben Perez and Joaquim RRA Martins. pyACDT: An object-oriented framework for
aircraft design modelling and multidisciplinary optimization. In 12th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, page 5955, 2008.

[27] Jan Roskam. Airplane design. DARcorporation, Lawrence, Kan, 1986.

[28] Jerome Sacks, William J. Welch, Toby J. Mitchell, and Henry P. Wynn. Design and
Analysis of Computer Experiments. Statistical Science, 4(4), November 1989.

[29] Timothy W Simpson, Timothy M Mauery, John J Korte, and Farrokh Mistree. Kriging
models for global approximation in simulation-based multidisciplinary design optimiza-
tion. AIAA journal, 39(12):2233–2241, 2001.

[30] Egbert Torenbeek. Synthesis of Subsonic Airplane Design. Springer Netherlands, Dor-
drecht, 1982.

[31] Felipe A. C. Viana, Timothy W. Simpson, Vladimir Balabanov, and Vasilli Toropov.
Special Section on Multidisciplinary Design Optimization: Metamodeling in Multidis-
ciplinary Design Optimization: How Far Have We Really Come? AIAA Journal,
52(4):670–690, April 2014.

	Introduction
	Motivation
	State of the art
	Introducing missioninformer
	Workflow

	Methodology
	Atmospheric conversions
	Cruise and mission fuel mass
	Method for solving the ODE
	Mission fuel mass iteration
	Surrogate models
	Kriging models
	RBF models
	Investigations on different surrogate models

	Shape Gradients
	Analytical attempt
	Numerical approach

	Results
	Solving the ODE
	Conducting a step-size-study
	Surrogate models
	Evaluating different surrogate models
	Kriging and TPS accuracy

	Discussion
	Conclusions and outlook

