Spaces:
Sleeping
Sleeping
File size: 3,994 Bytes
46e0dd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
# SpaBERT: A Pretrained Language Model from Geographic Data for Geo-Entity Representation
This repo contains code for [SpaBERT: A Pretrained Language Model from Geographic Data for Geo-Entity Representation](https://arxiv.org/abs/2210.12213) which was published in EMNLP 2022. SpaBERT provides a general-purpose geo-entity representation based on neighboring entities in geospatial data. SpaBERT extends BERT to capture linearized spatial context, while incorporating a spatial coordinate embedding mechanism to preserve spatial relations of entities in the 2-dimensional space. SpaBERT is pretrained with masked language modeling and masked entity prediction tasks to learn spatial dependencies.
* Slides: [emnlp22-spabert.pdf](https://drive.google.com/file/d/1V1URsRfpw13dbkb_zgBXeNqZJ0AF2744/view?usp=share_link)
## Pretraining
Pretrained model weights can be downloaded from the Google Drive for [SpaBERT-base](https://drive.google.com/file/d/1l44FY3DtDxzM_YVh3RR6PJwKnl80IYWB/view?usp=sharing) and [SpaBERT-large](https://drive.google.com/file/d/1LeZayTR92R5bu9gH_cGCwef7nnMX35cR/view?usp=share_link).
Weights can also obtained from training from scratch using the following sample code. Data for pretraining can be downloaded [here](https://drive.google.com/drive/folders/1eaeVvUCcJVcNwnyTCk-1N1IKfukihk4j?usp=share_link).
* Code to pretrain SpaBERT-base model:
```python3 train_mlm.py --lr=5e-5 --sep_between_neighbors --bert_option='bert-base'```
* Code to pretrain SpaBERT-large model:
```python3 train_mlm.py --lr=1e-6 --sep_between_neighbors --bert_option='bert-large```
## Downstream Tasks
### Supervised Geo-entity typing
The goal is to predict a geo-entity’s semantic type (e.g., transportation and healthcare) given the target geo-entity name and spatial context (i.e. surrounding neighbors name and location).
Models trained on OSM in London and California region can be downloaded from Google Drive for [SpaBERT-base](https://drive.google.com/file/d/1XFcA3sxC4wTlt7VjvMp1zNrWY5rjafzE/view?usp=share_link) and [SpaBERT-large](https://drive.google.com/file/d/12_FDVeSYkl_HQ61JmuMU6cRjQdKNpgR_/view?usp=share_link)
Data used for training and testing can be downloaded [here](https://drive.google.com/drive/folders/1uyvGdiJdu-Cym4dOKhQLIkKpfgHvfo01?usp=share_link)
* Sample code for training SpaBERT-base typing model
```
python3 train_cls_spatialbert.py --lr=5e-5 --sep_between_neighbors --bert_option='bert-base' --with_type --mlm_checkpoint_path='mlm_mem_keeppos_ep0_iter06000_0.2936.pth'
```
* Sample code for training SpaBERT-large typing model
```
python3 train_cls_spatialbert.py --lr=1e-6 --sep_between_neighbors --bert_option='bert-large' --with_type --mlm_checkpoint_path='mlm_mem_keeppos_ep1_iter02000_0.4400.pth' --epochs=20
```
### Unsupervised Geo-entity Linking
Geo-entity linking is to link geo-entities from a geographic information system (GIS) oriented dataset to a knowledge base (KB). This task unsupervised thus does not require any further training. Pretrained models can be directly used for this task.
Linking with SpaBERT-base
```
python3 unsupervised_wiki_location_allcand.py --model_name='spatial_bert-base' --sep_between_neighbors \
--spatial_bert_weight_dir='weights/' --spatial_bert_weight_name='mlm_mem_keeppos_ep0_iter06000_0.2936.pth'
```
Linking with SpaBERT-large
```
python3 unsupervised_wiki_location_allcand.py --model_name='spatial_bert-large' --sep_between_neighbors \
--spatial_bert_weight_dir='weights/' --spatial_bert_weight_name='mlm_mem_keeppos_ep1_iter02000_0.4400.pth'
```
Data used for linking from USGS historical maps to WikiData KB is provided [here](https://drive.google.com/drive/folders/1qKJnj71qxnca_TaygK-Y3EIySnMyFpFn?usp=share_link)
## Acknowledgement
```
@article{li2022spabert,
title={SpaBERT: A Pretrained Language Model from Geographic Data for Geo-Entity Representation},
author={Zekun Li, Jina Kim, Yao-Yi Chiang and Muhao Chen},
journal={EMNLP},
year={2022}
}
```
|