import argparse import cv2 import numpy as np import os from tqdm import tqdm import torch from basicsr.archs.ddcolor_arch import DDColor import torch.nn.functional as F class ImageColorizationPipeline(object): def __init__(self, model_path, input_size=256, model_size='large'): self.input_size = input_size if torch.cuda.is_available(): self.device = torch.device('cuda') else: self.device = torch.device('cpu') if model_size == 'tiny': self.encoder_name = 'convnext-t' else: self.encoder_name = 'convnext-l' self.decoder_type = "MultiScaleColorDecoder" if self.decoder_type == 'MultiScaleColorDecoder': self.model = DDColor( encoder_name=self.encoder_name, decoder_name='MultiScaleColorDecoder', input_size=[self.input_size, self.input_size], num_output_channels=2, last_norm='Spectral', do_normalize=False, num_queries=100, num_scales=3, dec_layers=9, ).to(self.device) else: self.model = DDColor( encoder_name=self.encoder_name, decoder_name='SingleColorDecoder', input_size=[self.input_size, self.input_size], num_output_channels=2, last_norm='Spectral', do_normalize=False, num_queries=256, ).to(self.device) self.model.load_state_dict( torch.load(model_path, map_location=torch.device('cpu'))['params'], strict=False) self.model.eval() @torch.no_grad() def process(self, img): self.height, self.width = img.shape[:2] # print(self.width, self.height) # if self.width * self.height < 100000: # self.input_size = 256 img = (img / 255.0).astype(np.float32) orig_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1] # (h, w, 1) # resize rgb image -> lab -> get grey -> rgb img = cv2.resize(img, (self.input_size, self.input_size)) img_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1] img_gray_lab = np.concatenate((img_l, np.zeros_like(img_l), np.zeros_like(img_l)), axis=-1) img_gray_rgb = cv2.cvtColor(img_gray_lab, cv2.COLOR_LAB2RGB) tensor_gray_rgb = torch.from_numpy(img_gray_rgb.transpose((2, 0, 1))).float().unsqueeze(0).to(self.device) output_ab = self.model(tensor_gray_rgb).cpu() # (1, 2, self.height, self.width) # resize ab -> concat original l -> rgb output_ab_resize = F.interpolate(output_ab, size=(self.height, self.width))[0].float().numpy().transpose(1, 2, 0) output_lab = np.concatenate((orig_l, output_ab_resize), axis=-1) output_bgr = cv2.cvtColor(output_lab, cv2.COLOR_LAB2BGR) output_img = (output_bgr * 255.0).round().astype(np.uint8) return output_img def main(): parser = argparse.ArgumentParser() parser.add_argument('--model_path', type=str, default='pretrain/net_g_200000.pth') parser.add_argument('--input', type=str, default='figure/', help='input test image folder or video path') parser.add_argument('--output', type=str, default='results', help='output folder or video path') parser.add_argument('--input_size', type=int, default=512, help='input size for model') parser.add_argument('--model_size', type=str, default='large', help='ddcolor model size') args = parser.parse_args() print(f'Output path: {args.output}') os.makedirs(args.output, exist_ok=True) img_list = os.listdir(args.input) assert len(img_list) > 0 colorizer = ImageColorizationPipeline(model_path=args.model_path, input_size=args.input_size, model_size=args.model_size) for name in tqdm(img_list): img = cv2.imread(os.path.join(args.input, name)) image_out = colorizer.process(img) cv2.imwrite(os.path.join(args.output, name), image_out) if __name__ == '__main__': main()