from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, TextClassificationPipeline import torch import gradio as gr from openpyxl import load_workbook from numpy import mean # Load tokenizers and models tokenizer = AutoTokenizer.from_pretrained("suriya7/bart-finetuned-text-summarization") model = AutoModelForSeq2SeqLM.from_pretrained("suriya7/bart-finetuned-text-summarization") tokenizer_keywords = AutoTokenizer.from_pretrained("transformer3/H2-keywordextractor") model_keywords = AutoModelForSeq2SeqLM.from_pretrained("transformer3/H2-keywordextractor") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") new_model = AutoModelForSequenceClassification.from_pretrained('roberta-rating') new_tokenizer = AutoTokenizer.from_pretrained('roberta-rating') classifier = TextClassificationPipeline(model=new_model, tokenizer=new_tokenizer, device=device) label_mapping = {1: '1/5', 2: '2/5', 3: '3/5', 4: '4/5', 5: '5/5'} # Function to parse Excel file def parse_xl(file_path): cells = [] workbook = load_workbook(filename=file_path) for sheet in workbook.worksheets: for row in sheet.iter_rows(): for cell in row: if cell.value != None: cells.append(cell.value) return cells # Function to evaluate reviews from Excel file def evaluate(file): reviews = parse_xl(file) ratings = [] text = "" sentiments = [] for review in reviews: rating = int(classifier(review)[0]['label'].split('_')[1]) ratings.append(rating) text += review text += " " sentiment = classifier(review)[0]['label'] sentiment_label = "Positive" if sentiment == "LABEL_4" or sentiment == "LABEL_5" else "Negative" if sentiment == "LABEL_1" or sentiment == "LABEL_2" else "Neutral" sentiments.append(sentiment_label) overall_sentiment = "Positive" if sentiments.count("Positive") > sentiments.count("Negative") else "Negative" if sentiments.count("Negative") > sentiments.count("Positive") else "Neutral" inputs = tokenizer([text], max_length=1024, truncation=True, return_tensors="pt") summary_ids = model.generate(inputs["input_ids"], num_beams=2, min_length=10, max_length=50) summary = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] # Modify the summary to third person summary = summary.replace("I", "He/She").replace("my", "his/her").replace("me", "him/her") inputs_keywords = tokenizer_keywords([text], max_length=1024, truncation=True, return_tensors="pt") summary_ids_keywords = model_keywords.generate(inputs_keywords["input_ids"], num_beams=2, min_length=0, max_length=100) keywords = tokenizer_keywords.batch_decode(summary_ids_keywords, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] return round(mean(ratings), 2), summary, keywords, overall_sentiment # Function to test a single text input def test_area(text): inputs = tokenizer([text], max_length=1024, truncation=True, return_tensors="pt") summary_ids = model.generate(inputs["input_ids"], num_beams=2, min_length=10, max_length=50) summary = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] # Modify the summary to third person summary = summary.replace("I", "He/She").replace("my", "his/her").replace("me", "him/her") inputs_keywords = tokenizer_keywords([text], max_length=1024, truncation=True, return_tensors="pt") summary_ids_keywords = model_keywords.generate(inputs_keywords["input_ids"], num_beams=2, min_length=0, max_length=100) keywords = tokenizer_keywords.batch_decode(summary_ids_keywords, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] sentiment = classifier(text)[0]['label'] sentiment_label = "Positive" if sentiment == "LABEL_4" or sentiment == "LABEL_5" else "Negative" if sentiment == "LABEL_1" or sentiment == "LABEL_2" else "Neutral" rating = int(classifier(text)[0]['label'].split('_')[1]) return rating, summary, keywords, sentiment_label # Main interface main_interface = gr.Interface( fn=evaluate, inputs=gr.File(label="Reviews"), outputs=[gr.Textbox(label="Overall Rating"), gr.Textbox(label="Summary"), gr.Textbox(label="Keywords"), gr.Textbox(label="Overall Sentiment")], title='Summarize Reviews', description="Evaluate and summarize collection of reviews. Reviews are submitted as an Excel file, where each review is in its own cell." ) # Testing area interface testing_interface = gr.Interface( fn=test_area, inputs=gr.Textbox(label="Input Text"), outputs=[gr.Textbox(label="Rating"), gr.Textbox(label="Summary"), gr.Textbox(label="Keywords"), gr.Textbox(label="Sentiment")], title='Testing Area', description="Test the summarization, keyword extraction, sentiment analysis, and rating on custom text input." ) # Combine interfaces into a tabbed interface with a sidebar with gr.Blocks() as demo: with gr.Row(): with gr.Column(scale=1): gr.Markdown("## Sidebar") gr.Button("Button 1") gr.Button("Button 2") with gr.Column(scale=4): iface = gr.TabbedInterface( [main_interface, testing_interface], ["Summarize Reviews", "Testing Area"] ) demo.launch(share=True)