import gradio as gr import numpy as np from deepface import DeepFace from pymongo.mongo_client import MongoClient import cv2 credentials = "jamshaid:jamshaid19gh" uri = f"mongodb+srv://{credentials}@cluster0.uimyui3.mongodb.net/?retryWrites=true&w=majority" client = MongoClient(uri) db = client["Face_identification"] identities_collection = db["face_identities"] model_name="Facenet" debug=False def save_identity(image , name): try: embeddings = DeepFace.represent(image , model_name=model_name , detector_backend = "retinaface") embeddings = embeddings[0] identity = {"embeddings":embeddings["embedding"] , "name" : name } result = identities_collection.insert_one(identity) return f"{name} stored in database successfully.It is recommended to add 2 or 3 high quality images for one person" except Exception as error: return str(error) def findCosineDistance(source_representation, test_representation): a = np.matmul(np.transpose(source_representation), test_representation) b = np.sum(np.multiply(source_representation, source_representation)) c = np.sum(np.multiply(test_representation, test_representation)) return 1 - (a / (np.sqrt(b) * np.sqrt(c))) def findThreshold(model_name, distance_metric): base_threshold = {"cosine": 0.40, "euclidean": 0.55, "euclidean_l2": 0.75} thresholds = { "VGG-Face": {"cosine": 0.40, "euclidean": 0.60, "euclidean_l2": 0.86}, "Facenet": {"cosine": 0.40, "euclidean": 10, "euclidean_l2": 0.80}, "Facenet512": {"cosine": 0.30, "euclidean": 23.56, "euclidean_l2": 1.04}, "ArcFace": {"cosine": 0.68, "euclidean": 4.15, "euclidean_l2": 1.13}, "Dlib": {"cosine": 0.07, "euclidean": 0.6, "euclidean_l2": 0.4}, "SFace": {"cosine": 0.593, "euclidean": 10.734, "euclidean_l2": 1.055}, "OpenFace": {"cosine": 0.10, "euclidean": 0.55, "euclidean_l2": 0.55}, "DeepFace": {"cosine": 0.23, "euclidean": 64, "euclidean_l2": 0.64}, "DeepID": {"cosine": 0.015, "euclidean": 45, "euclidean_l2": 0.17}, } threshold = thresholds.get(model_name, base_threshold).get(distance_metric, 0.4) return threshold threshold = findThreshold(model_name , "cosine") def predict_image(image): original_image = np.copy(image) if debug: print("1") # getting face embeddings from database results = identities_collection.find() faces = [dict(result) for result in results] if debug: print("2") # generate face embeddings for all detected faces in image target_embedding_array = DeepFace.represent( img_path=image, model_name=model_name, detector_backend = "retinaface" ) identities = [] # for each face compare its embeddings with all face embeddings in database for target_embedding_obj in target_embedding_array: target_embedding = target_embedding_obj["embedding"] if debug: print("4") # compare the face embedding with all other faces name = "Unknown" for face in faces: distance = findCosineDistance(face["embeddings"], target_embedding) if distance <= threshold: name = face["name"] break if debug: print("5") identities.append({"name":name , "facial_area":target_embedding_obj["facial_area"]}) output_img = np.copy(original_image) for identity in identities: # Draw the rectangle on the image x = identity["facial_area"]["x"] y = identity["facial_area"]["y"] w = identity["facial_area"]["w"] h = identity["facial_area"]["h"] cv2.rectangle(output_img, (x,y), (x+w,y+h), (0, 0, 255), 2) # Define the text position text_position = (x, y+h+30) # Add the text to the image cv2.putText(output_img ,identity["name"], text_position, cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255,0 ), 2) return output_img # image_input = gr.inputs.Image(shape=(160,160)) # Create the Gradio interface # gr.Interface(fn=predict_image, inputs=image_input, outputs=label_output).launch() # Create Gradio interfaces for input and output image_input = gr.inputs.Image(shape=(160, 160)) label_input = gr.inputs.Textbox(label="Enter Name") label_output = gr.outputs.Textbox() # Create the Gradio interface interface1 = gr.Interface( fn=save_identity, inputs=[image_input, label_input], outputs=label_output, title="Face Identification", description="Upload an image, enter the person name and store the person in database", ) # Create Gradio interfaces for image input and output image_input2 = gr.inputs.Image(shape=(160,160)) output_image = gr.outputs.Image(type="numpy") # output_image = gr.outputs.Textbox() # Create the Gradio interface for image input and output interface2 = gr.Interface( fn=predict_image, inputs=image_input2, outputs=output_image, title="Face Identification", description="Upload an image and get the identity of person", ) # Create the Gradio interface with two tabs # interface = gr.Interface(title="Face identification App") # interface.add_view(interface1, "Save", "Add new person") # interface.add_view(interface2, "Predict", "Get identity of person") gr.TabbedInterface( [interface2 , interface1], tab_names=["Predict Persons","Add new Person"] ).queue().launch() # Launch the Gradio interface # interface.launch()