import gradio as gr from fastai.vision.all import * learn = load_learner("dogIdentifier.pkl") labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} inter_arguments = { "fn": predict, "inputs":gr.inputs.Image(shape=(512, 512)), "outputs": gr.outputs.Label(num_top_classes=3), "title": "Dog Breed Classifier", "description": "It contains the ten main breeds of dogs, including Beagle, Bulldog, Chihuahua, Dachshund, German Sheperd, Golden Retriver, Husky, Malamute and Poodle", "interpretation": 'default', "examples": ["images/Chihuahua_1.jpg"], "article": "
" } gr.Interface(**inter_arguments).launch(share=True) # import gradio as gr # def greet(name): # return "Hello " + name + "!!" # iface = gr.Interface(fn=greet, inputs="text", outputs="text") # iface.launch()