import torch import pandas as pd import numpy as np import gradio as gr from PIL import Image from torch.nn import functional as F from collections import OrderedDict from torchvision import transforms from pytorch_grad_cam import GradCAM from pytorch_grad_cam.utils.image import show_cam_on_image from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget from pytorch_lightning import LightningModule, Trainer, seed_everything import albumentations as A from albumentations.pytorch import ToTensorV2 import torchvision.transforms as T from custom_resnet import LitResnet classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] wrong_img = pd.read_csv('misclassified_images.csv') wrong_img_no = len(wrong_img) model = LitResnet() model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu')), strict=False) model.eval() transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) inv_normalize = T.Normalize( mean=[-0.50/0.23, -0.50/0.23, -0.50/0.23], std=[1/0.23, 1/0.23, 1/0.23]) grad_cams = [GradCAM(model=model, target_layers=[model.convblock3[i]], use_cuda=False) for i in range(5)] def get_gradcam_image(input_tensor, label, target_layer): grad_cam = grad_cams[target_layer] targets = [ClassifierOutputTarget(label)] grayscale_cam = grad_cam(input_tensor=input_tensor, targets=targets) grayscale_cam = grayscale_cam[0, :] return grayscale_cam def image_classifier(input_image, top_classes=3, show_cam=True, target_layers=[2, 3], transparency=0.5): orig_image = input_image input_image = transform(input_image) input_image = input_image.unsqueeze(0) output = model(input_image) softmax = torch.nn.Softmax(dim=0) o = softmax(output.flatten()) confidences = {classes[i]: float(o[i]) for i in range(10)} confidences_sorted = dict(sorted(confidences.items(), key=lambda x:x[1],reverse=True)) confidences = {k: confidences_sorted[k] for k in list(confidences_sorted)[:top_classes]} _, label = torch.max(output, 1) outputs = list() if show_cam: for layer in target_layers: grayscale_cam = get_gradcam_image(input_image, label, layer) output_image = show_cam_on_image(orig_image / 255, grayscale_cam, use_rgb=True, image_weight=transparency) outputs.append((output_image, f"Layer {layer - 5}")) return outputs, confidences #examples = [["examples/cat.jpg", 3, True,["-2","-1"],0.5], ["examples/dog.jpg", 3, True,["-2","-1"],0.5]] examples = [] for i in range(10): examples.append([f'examples/{classes[i]}.jpg', 3, True,["-2","-1"],0.5]) demo_1 = gr.Interface( fn=image_classifier, inputs=[ gr.Image(shape=(32, 32), label="Input Image").style(width=128, height=128), gr.Slider(1, 10, value=3, step=1, label="Top Classes", info="How many top classes do you want to see?"), gr.Checkbox(label="Enable GradCAM", value=True, info="Do you want to see GradCAM Images?"), gr.CheckboxGroup(["-5","-4", "-3", "-2", "-1"], value=["-2", "-1"], label="Network Layers", type='index', info="On which layer do you want to see GradCAM?",), gr.Slider(0, 1, value=0.5, label="Transparency", step=0.1, info="Set Transparency of CAMs") ], outputs=[gr.Gallery(label="Output Images", columns=2, rows=2), gr.Label(label='Top Classes')], examples=examples ) def show_incorrect(num_examples=10): result = list() for i in range(num_examples): j = np.random.randint(1,wrong_img_no) image = np.asarray(Image.open(f'misclassified-images/{j}.jpg')) actual = classes[wrong_img.loc[j-1].at["actual"]] predicted = classes[wrong_img.loc[j-1].at["predicted"]] result.append((image, f"Actual:{actual} / Predicted:{predicted}")) return result demo_2 = gr.Interface( fn=show_incorrect, inputs=[ gr.Number(value=10, minimum=1, maximum=50, label="Number of images", precision=0, info="How many misclassified examples do you want to view? (max 50)") ], outputs=[gr.Gallery(label="Misclassified Images (Actual / Predicted)", columns=5)] ) demo = gr.TabbedInterface([demo_1, demo_2], ["Image Classifier", "Misclassified Images"]) demo.launch()