JaiShankar's picture
Upload 3 files
c2ffbe8
import torch
import pandas as pd
import numpy as np
import gradio as gr
from PIL import Image
from torch.nn import functional as F
from collections import OrderedDict
from torchvision import transforms
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_lightning import LightningModule, Trainer, seed_everything
import albumentations as A
from albumentations.pytorch import ToTensorV2
import torchvision.transforms as T
from custom_resnet import LitResnet
classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
wrong_img = pd.read_csv('misclassified_images.csv')
wrong_img_no = len(wrong_img)
model = LitResnet()
model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu')), strict=False)
model.eval()
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
inv_normalize = T.Normalize(
mean=[-0.50/0.23, -0.50/0.23, -0.50/0.23],
std=[1/0.23, 1/0.23, 1/0.23])
grad_cams = [GradCAM(model=model, target_layers=[model.convblock3[i]], use_cuda=False) for i in range(5)]
def get_gradcam_image(input_tensor, label, target_layer):
grad_cam = grad_cams[target_layer]
targets = [ClassifierOutputTarget(label)]
grayscale_cam = grad_cam(input_tensor=input_tensor, targets=targets)
grayscale_cam = grayscale_cam[0, :]
return grayscale_cam
def image_classifier(input_image, top_classes=3, show_cam=True, target_layers=[2, 3], transparency=0.5):
orig_image = input_image
input_image = transform(input_image)
input_image = input_image.unsqueeze(0)
output = model(input_image)
softmax = torch.nn.Softmax(dim=0)
o = softmax(output.flatten())
confidences = {classes[i]: float(o[i]) for i in range(10)}
confidences_sorted = dict(sorted(confidences.items(), key=lambda x:x[1],reverse=True))
confidences = {k: confidences_sorted[k] for k in list(confidences_sorted)[:top_classes]}
_, label = torch.max(output, 1)
outputs = list()
if show_cam:
for layer in target_layers:
grayscale_cam = get_gradcam_image(input_image, label, layer)
output_image = show_cam_on_image(orig_image / 255, grayscale_cam, use_rgb=True, image_weight=transparency)
outputs.append((output_image, f"Layer {layer - 5}"))
return outputs, confidences
#examples = [["examples/cat.jpg", 3, True,["-2","-1"],0.5], ["examples/dog.jpg", 3, True,["-2","-1"],0.5]]
examples = []
for i in range(10):
examples.append([f'examples/{classes[i]}.jpg', 3, True,["-2","-1"],0.5])
demo_1 = gr.Interface(
fn=image_classifier,
inputs=[
gr.Image(shape=(32, 32), label="Input Image").style(width=128, height=128),
gr.Slider(1, 10, value=3, step=1, label="Top Classes",
info="How many top classes do you want to see?"),
gr.Checkbox(label="Enable GradCAM", value=True, info="Do you want to see GradCAM Images?"),
gr.CheckboxGroup(["-5","-4", "-3", "-2", "-1"], value=["-2", "-1"], label="Network Layers", type='index',
info="On which layer do you want to see GradCAM?",),
gr.Slider(0, 1, value=0.5, label="Transparency", step=0.1,
info="Set Transparency of CAMs")
],
outputs=[gr.Gallery(label="Output Images", columns=2, rows=2), gr.Label(label='Top Classes')],
examples=examples
)
def show_incorrect(num_examples=10):
result = list()
for i in range(num_examples):
j = np.random.randint(1,wrong_img_no)
image = np.asarray(Image.open(f'misclassified-images/{j}.jpg'))
actual = classes[wrong_img.loc[j-1].at["actual"]]
predicted = classes[wrong_img.loc[j-1].at["predicted"]]
result.append((image, f"Actual:{actual} / Predicted:{predicted}"))
return result
demo_2 = gr.Interface(
fn=show_incorrect,
inputs=[
gr.Number(value=10, minimum=1, maximum=50, label="Number of images", precision=0,
info="How many misclassified examples do you want to view? (max 50)")
],
outputs=[gr.Gallery(label="Misclassified Images (Actual / Predicted)", columns=5)]
)
demo = gr.TabbedInterface([demo_1, demo_2], ["Image Classifier", "Misclassified Images"])
demo.launch()