import gradio as gr import torch from model import ECAPA_gender # Load the model model = ECAPA_gender.from_pretrained("JaesungHuh/ecapa-gender") model.eval() def predict_gender(filepath): audio = model.load_audio(filepath) with torch.no_grad(): output = model.forward(audio) probs = torch.softmax(output, dim=1) prob_dict = {model.pred2gender[i]: float(prob) for i, prob in enumerate(probs[0])} return prob_dict audio_component = gr.Audio(type='filepath', label='Upload your audio file here') label_component = gr.Label(label='Gender classification result') demo = gr.Interface(fn=predict_gender, inputs=audio_component, outputs=label_component, examples=['00001.wav', '00002.wav']) demo.launch()