import torch import torch.nn as nn import torch.nn.functional as F import torchaudio from torchaudio.functional import resample import math class SEModule(nn.Module): def __init__(self, channels, bottleneck=128): super(SEModule, self).__init__() self.se = nn.Sequential( nn.AdaptiveAvgPool1d(1), nn.Conv1d(channels, bottleneck, kernel_size=1, padding=0), nn.ReLU(), # nn.BatchNorm1d(bottleneck), # I remove this layer nn.Conv1d(bottleneck, channels, kernel_size=1, padding=0), nn.Sigmoid(), ) def forward(self, input): x = self.se(input) return input * x class Bottle2neck(nn.Module): def __init__(self, inplanes, planes, kernel_size=None, dilation=None, scale = 8): super(Bottle2neck, self).__init__() width = int(math.floor(planes / scale)) self.conv1 = nn.Conv1d(inplanes, width*scale, kernel_size=1) self.bn1 = nn.BatchNorm1d(width*scale) self.nums = scale -1 convs = [] bns = [] num_pad = math.floor(kernel_size/2)*dilation for i in range(self.nums): convs.append(nn.Conv1d(width, width, kernel_size=kernel_size, dilation=dilation, padding=num_pad)) bns.append(nn.BatchNorm1d(width)) self.convs = nn.ModuleList(convs) self.bns = nn.ModuleList(bns) self.conv3 = nn.Conv1d(width*scale, planes, kernel_size=1) self.bn3 = nn.BatchNorm1d(planes) self.relu = nn.ReLU() self.width = width self.se = SEModule(planes) def forward(self, x): residual = x out = self.conv1(x) out = self.relu(out) out = self.bn1(out) spx = torch.split(out, self.width, 1) for i in range(self.nums): if i==0: sp = spx[i] else: sp = sp + spx[i] sp = self.convs[i](sp) sp = self.relu(sp) sp = self.bns[i](sp) if i==0: out = sp else: out = torch.cat((out, sp), 1) out = torch.cat((out, spx[self.nums]),1) out = self.conv3(out) out = self.relu(out) out = self.bn3(out) out = self.se(out) out += residual return out class PreEmphasis(torch.nn.Module): def __init__(self, coef: float = 0.97): super().__init__() self.coef = coef self.register_buffer( 'flipped_filter', torch.FloatTensor([-self.coef, 1.]).unsqueeze(0).unsqueeze(0) ) def forward(self, input: torch.tensor) -> torch.tensor: input = input.unsqueeze(1) input = F.pad(input, (1, 0), 'reflect') return F.conv1d(input, self.flipped_filter).squeeze(1) class ECAPA_gender(nn.Module): def __init__(self, config): super(ECAPA_gender, self).__init__() self.config = config C = config["C"] self.torchfbank = torch.nn.Sequential( PreEmphasis(), torchaudio.transforms.MelSpectrogram(sample_rate=16000, n_fft=512, win_length=400, hop_length=160, \ f_min = 20, f_max = 7600, window_fn=torch.hamming_window, n_mels=80), ) self.conv1 = nn.Conv1d(80, C, kernel_size=5, stride=1, padding=2) self.relu = nn.ReLU() self.bn1 = nn.BatchNorm1d(C) self.layer1 = Bottle2neck(C, C, kernel_size=3, dilation=2, scale=8) self.layer2 = Bottle2neck(C, C, kernel_size=3, dilation=3, scale=8) self.layer3 = Bottle2neck(C, C, kernel_size=3, dilation=4, scale=8) # I fixed the shape of the output from MFA layer, that is close to the setting from ECAPA paper. self.layer4 = nn.Conv1d(3*C, 1536, kernel_size=1) self.attention = nn.Sequential( nn.Conv1d(4608, 256, kernel_size=1), nn.ReLU(), nn.BatchNorm1d(256), nn.Tanh(), # I add this layer nn.Conv1d(256, 1536, kernel_size=1), nn.Softmax(dim=2), ) self.bn5 = nn.BatchNorm1d(3072) self.fc6 = nn.Linear(3072, 192) self.bn6 = nn.BatchNorm1d(192) self.fc7 = nn.Linear(192, 2) self.pred2gender = {0 : 'Male', 1 : 'Female'} def forward(self, x): with torch.no_grad(): x = self.torchfbank(x)+1e-6 x = x.log() x = x - torch.mean(x, dim=-1, keepdim=True) x = self.conv1(x) x = self.relu(x) x = self.bn1(x) x1 = self.layer1(x) x2 = self.layer2(x+x1) x3 = self.layer3(x+x1+x2) x = self.layer4(torch.cat((x1,x2,x3),dim=1)) x = self.relu(x) t = x.size()[-1] global_x = torch.cat((x,torch.mean(x,dim=2,keepdim=True).repeat(1,1,t), torch.sqrt(torch.var(x,dim=2,keepdim=True).clamp(min=1e-4)).repeat(1,1,t)), dim=1) w = self.attention(global_x) mu = torch.sum(x * w, dim=2) sg = torch.sqrt( ( torch.sum((x**2) * w, dim=2) - mu**2 ).clamp(min=1e-4) ) x = torch.cat((mu,sg),1) x = self.bn5(x) x = self.fc6(x) x = self.bn6(x) x = self.relu(x) x = self.fc7(x) return x def load_audio(self, path): audio, sr = torchaudio.load(path) if sr != 16000: audio = resample(audio, sr, 16000) return audio def predict(self, audio): audio = self.load_audio(audio) self.eval() with torch.no_grad(): output = self.forward(audio) _, pred = output.max(1) return self.pred2gender[pred.item()]