--- license: apache-2.0 title: OCM sdk: gradio emoji: 🚀 colorFrom: red colorTo: yellow short_description: Multi Control --- # InstantID Cog Model ## Overview This repository contains the implementation of [InstantID](https://github.com/InstantID/InstantID) as a [Cog](https://github.com/replicate/cog) model. Using [Cog](https://github.com/replicate/cog) allows any users with a GPU to run the model locally easily, without the hassle of downloading weights, installing libraries, or managing CUDA versions. Everything just works. ## Development To push your own fork of InstantID to [Replicate](https://replicate.com), follow the [Model Pushing Guide](https://replicate.com/docs/guides/push-a-model). ## Basic Usage To make predictions using the model, execute the following command from the root of this project: > **Note:** > default SDXL model: AlbedoBase XL V2 > default scheduler: 4-step sdxl-lighting for fast inference ```bash cog predict \ -i face_image_path=@examples/halle-berry.jpeg \ -i prompt="woman as elven princess, with blue sheen dress" \ -i negative_prompt="nsfw" \ -i adapter_strength_ratio=0.8 \ -i identitynet_strength_ratio=0.8 \ -i safety_checker=True ```

Input

Sample Input Image

Output

Sample Output Image
To change the denoising steps, use argument: ```bash -i lightning_steps="2step" (or "8step") ``` To use a custom scheduler, pose controlnet and a different base SDXL model: ```bash Example: cog predict \ -i face_image_path=@examples/halle-berry.jpeg \ -i pose_image_path=@examples/poses/ballet-pose.jpg \ -i prompt="photo of a ballerina on stage" \ -i model="Juggernaut XL V8" \ -i adapter_strength_ratio=0.8 \ -i identitynet_strength_ratio=0.8 \ -i pose=True \ -i pose_strength=0.4 \ -i enable_fast_mode=False \ -i scheduler="DPMSolverMultistepScheduler-Karras" \ -i num_steps=30 \ -i guidance_scale=4 \ -i safety_checker=True ``` ## Input Parameters The following table provides details about each input parameter for the `predict` function: | Parameter | Description | Default Value | Range | | ---------------------------- | --------------------------------------- | --------------------------------------------------| ----------- | | `face_image_path` | Input image | A path to the input image file | Path string | | `pose_image_path` | Input image | A path to the reference pose image file | Path string | | `prompt` | Input prompt | "a person" | String | | `negative_prompt` | Input Negative Prompt | "ugly, low quality, deformed face" | String | | `model` | SDXL image model choices | "AlbedoBase XL V2" | String | | `enable_fast_mode` | enable SDXL-Lightning LoRA | True | Boolean | | `lightning_steps` | select SDXL-Lightning denoising steps | "4step" | String | | `scheduler` | scheduler algorithm choices | "DPMSolverMultistepScheduler" | String | | `adapter_strength_ratio` | Scale for IP adapter | 0.8 | 0.0 - 1.0 | | `identitynet_strength_ratio` | Scale for ControlNet conditioning | 0.8 | 0.0 - 1.0 | | `pose` | select ControlNet pose model | False | Boolean | | `pose_strength` | Scale for pose conditioning | 0.5 | 0.0 - 1.5 | | `canny` | select ControlNet canny edge model | False | Boolean | | `canny_strength` | Scale for canny edge conditioning | 0.5 | 0.0 - 1.5 | | `depth_map` | select ControlNet depth model | False | Boolean | | `depth_strength` | Scale for depth map conditioning | 0.5 | 0.0 - 1.5 | | `num_steps` | Number of denoising steps | 25 | 1 - 50 | | `guidance_scale` | Scale for classifier-free guidance | 7 | 1 - 10 | | `seed` | RNG seed number | 0 (= random seed) | 0 - int MAX | | `safety_checker` | Enable or disable NSFW filter | True | Boolean |