---
license: apache-2.0
title: OCM
sdk: gradio
emoji: 🚀
colorFrom: red
colorTo: yellow
short_description: Multi Control
---
# InstantID Cog Model
## Overview
This repository contains the implementation of [InstantID](https://github.com/InstantID/InstantID) as a [Cog](https://github.com/replicate/cog) model.
Using [Cog](https://github.com/replicate/cog) allows any users with a GPU to run the model locally easily, without the hassle of downloading weights, installing libraries, or managing CUDA versions. Everything just works.
## Development
To push your own fork of InstantID to [Replicate](https://replicate.com), follow the [Model Pushing Guide](https://replicate.com/docs/guides/push-a-model).
## Basic Usage
To make predictions using the model, execute the following command from the root of this project:
> **Note:**
> default SDXL model: AlbedoBase XL V2
> default scheduler: 4-step sdxl-lighting for fast inference
```bash
cog predict \
-i face_image_path=@examples/halle-berry.jpeg \
-i prompt="woman as elven princess, with blue sheen dress" \
-i negative_prompt="nsfw" \
-i adapter_strength_ratio=0.8 \
-i identitynet_strength_ratio=0.8 \
-i safety_checker=True
```
Input
|
Output
|
To change the denoising steps, use argument:
```bash
-i lightning_steps="2step" (or "8step")
```
To use a custom scheduler, pose controlnet and a different base SDXL model:
```bash
Example:
cog predict \
-i face_image_path=@examples/halle-berry.jpeg \
-i pose_image_path=@examples/poses/ballet-pose.jpg \
-i prompt="photo of a ballerina on stage" \
-i model="Juggernaut XL V8" \
-i adapter_strength_ratio=0.8 \
-i identitynet_strength_ratio=0.8 \
-i pose=True \
-i pose_strength=0.4 \
-i enable_fast_mode=False \
-i scheduler="DPMSolverMultistepScheduler-Karras" \
-i num_steps=30 \
-i guidance_scale=4 \
-i safety_checker=True
```
## Input Parameters
The following table provides details about each input parameter for the `predict` function:
| Parameter | Description | Default Value | Range |
| ---------------------------- | --------------------------------------- | --------------------------------------------------| ----------- |
| `face_image_path` | Input image | A path to the input image file | Path string |
| `pose_image_path` | Input image | A path to the reference pose image file | Path string |
| `prompt` | Input prompt | "a person" | String |
| `negative_prompt` | Input Negative Prompt | "ugly, low quality, deformed face" | String |
| `model` | SDXL image model choices | "AlbedoBase XL V2" | String |
| `enable_fast_mode` | enable SDXL-Lightning LoRA | True | Boolean |
| `lightning_steps` | select SDXL-Lightning denoising steps | "4step" | String |
| `scheduler` | scheduler algorithm choices | "DPMSolverMultistepScheduler" | String |
| `adapter_strength_ratio` | Scale for IP adapter | 0.8 | 0.0 - 1.0 |
| `identitynet_strength_ratio` | Scale for ControlNet conditioning | 0.8 | 0.0 - 1.0 |
| `pose` | select ControlNet pose model | False | Boolean |
| `pose_strength` | Scale for pose conditioning | 0.5 | 0.0 - 1.5 |
| `canny` | select ControlNet canny edge model | False | Boolean |
| `canny_strength` | Scale for canny edge conditioning | 0.5 | 0.0 - 1.5 |
| `depth_map` | select ControlNet depth model | False | Boolean |
| `depth_strength` | Scale for depth map conditioning | 0.5 | 0.0 - 1.5 |
| `num_steps` | Number of denoising steps | 25 | 1 - 50 |
| `guidance_scale` | Scale for classifier-free guidance | 7 | 1 - 10 |
| `seed` | RNG seed number | 0 (= random seed) | 0 - int MAX |
| `safety_checker` | Enable or disable NSFW filter | True | Boolean |