# Copyright 2022 Katherine Crowson and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from scipy import integrate from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( _FLAX_COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) @flax.struct.dataclass class LMSDiscreteSchedulerState: # setable values num_inference_steps: Optional[int] = None timesteps: Optional[jnp.ndarray] = None sigmas: Optional[jnp.ndarray] = None derivatives: jnp.ndarray = jnp.array([]) @classmethod def create(cls, num_train_timesteps: int, sigmas: jnp.ndarray): return cls(timesteps=jnp.arange(0, num_train_timesteps)[::-1], sigmas=sigmas) @dataclass class FlaxLMSSchedulerOutput(FlaxSchedulerOutput): state: LMSDiscreteSchedulerState class FlaxLMSDiscreteScheduler(FlaxSchedulerMixin, ConfigMixin): """ Linear Multistep Scheduler for discrete beta schedules. Based on the original k-diffusion implementation by Katherine Crowson: https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L181 [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and [`~SchedulerMixin.from_pretrained`] functions. Args: num_train_timesteps (`int`): number of diffusion steps used to train the model. beta_start (`float`): the starting `beta` value of inference. beta_end (`float`): the final `beta` value. beta_schedule (`str`): the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear` or `scaled_linear`. trained_betas (`jnp.ndarray`, optional): option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. """ _compatibles = _FLAX_COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy() @property def has_state(self): return True @register_to_config def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.0001, beta_end: float = 0.02, beta_schedule: str = "linear", trained_betas: Optional[jnp.ndarray] = None, ): if trained_betas is not None: self.betas = jnp.asarray(trained_betas) elif beta_schedule == "linear": self.betas = jnp.linspace(beta_start, beta_end, num_train_timesteps, dtype=jnp.float32) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. self.betas = jnp.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=jnp.float32) ** 2 else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") self.alphas = 1.0 - self.betas self.alphas_cumprod = jnp.cumprod(self.alphas, axis=0) def create_state(self): self.state = LMSDiscreteSchedulerState.create( num_train_timesteps=self.config.num_train_timesteps, sigmas=((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5, ) def scale_model_input(self, state: LMSDiscreteSchedulerState, sample: jnp.ndarray, timestep: int) -> jnp.ndarray: """ Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the K-LMS algorithm. Args: state (`LMSDiscreteSchedulerState`): the `FlaxLMSDiscreteScheduler` state data class instance. sample (`jnp.ndarray`): current instance of sample being created by diffusion process. timestep (`int`): current discrete timestep in the diffusion chain. Returns: `jnp.ndarray`: scaled input sample """ (step_index,) = jnp.where(state.timesteps == timestep, size=1) sigma = state.sigmas[step_index] sample = sample / ((sigma**2 + 1) ** 0.5) return sample def get_lms_coefficient(self, state, order, t, current_order): """ Compute a linear multistep coefficient. Args: order (TODO): t (TODO): current_order (TODO): """ def lms_derivative(tau): prod = 1.0 for k in range(order): if current_order == k: continue prod *= (tau - state.sigmas[t - k]) / (state.sigmas[t - current_order] - state.sigmas[t - k]) return prod integrated_coeff = integrate.quad(lms_derivative, state.sigmas[t], state.sigmas[t + 1], epsrel=1e-4)[0] return integrated_coeff def set_timesteps( self, state: LMSDiscreteSchedulerState, num_inference_steps: int, shape: Tuple = () ) -> LMSDiscreteSchedulerState: """ Sets the timesteps used for the diffusion chain. Supporting function to be run before inference. Args: state (`LMSDiscreteSchedulerState`): the `FlaxLMSDiscreteScheduler` state data class instance. num_inference_steps (`int`): the number of diffusion steps used when generating samples with a pre-trained model. """ timesteps = jnp.linspace(self.config.num_train_timesteps - 1, 0, num_inference_steps, dtype=jnp.float32) low_idx = jnp.floor(timesteps).astype(int) high_idx = jnp.ceil(timesteps).astype(int) frac = jnp.mod(timesteps, 1.0) sigmas = jnp.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) sigmas = (1 - frac) * sigmas[low_idx] + frac * sigmas[high_idx] sigmas = jnp.concatenate([sigmas, jnp.array([0.0])]).astype(jnp.float32) return state.replace( num_inference_steps=num_inference_steps, timesteps=timesteps.astype(int), derivatives=jnp.array([]), sigmas=sigmas, ) def step( self, state: LMSDiscreteSchedulerState, model_output: jnp.ndarray, timestep: int, sample: jnp.ndarray, order: int = 4, return_dict: bool = True, ) -> Union[FlaxLMSSchedulerOutput, Tuple]: """ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion process from the learned model outputs (most often the predicted noise). Args: state (`LMSDiscreteSchedulerState`): the `FlaxLMSDiscreteScheduler` state data class instance. model_output (`jnp.ndarray`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`jnp.ndarray`): current instance of sample being created by diffusion process. order: coefficient for multi-step inference. return_dict (`bool`): option for returning tuple rather than FlaxLMSSchedulerOutput class Returns: [`FlaxLMSSchedulerOutput`] or `tuple`: [`FlaxLMSSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ sigma = state.sigmas[timestep] # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise pred_original_sample = sample - sigma * model_output # 2. Convert to an ODE derivative derivative = (sample - pred_original_sample) / sigma state = state.replace(derivatives=jnp.append(state.derivatives, derivative)) if len(state.derivatives) > order: state = state.replace(derivatives=jnp.delete(state.derivatives, 0)) # 3. Compute linear multistep coefficients order = min(timestep + 1, order) lms_coeffs = [self.get_lms_coefficient(state, order, timestep, curr_order) for curr_order in range(order)] # 4. Compute previous sample based on the derivatives path prev_sample = sample + sum( coeff * derivative for coeff, derivative in zip(lms_coeffs, reversed(state.derivatives)) ) if not return_dict: return (prev_sample, state) return FlaxLMSSchedulerOutput(prev_sample=prev_sample, state=state) def add_noise( self, state: LMSDiscreteSchedulerState, original_samples: jnp.ndarray, noise: jnp.ndarray, timesteps: jnp.ndarray, ) -> jnp.ndarray: sigma = state.sigmas[timesteps].flatten() sigma = broadcast_to_shape_from_left(sigma, noise.shape) noisy_samples = original_samples + noise * sigma return noisy_samples def __len__(self): return self.config.num_train_timesteps