# Copyright 2022 TSAIL Team and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from ..utils import deprecate from .scheduling_utils_flax import ( _FLAX_COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) def betas_for_alpha_bar(num_diffusion_timesteps: int, max_beta=0.999) -> jnp.ndarray: """ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of (1-beta) over time from t = [0,1]. Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up to that part of the diffusion process. Args: num_diffusion_timesteps (`int`): the number of betas to produce. max_beta (`float`): the maximum beta to use; use values lower than 1 to prevent singularities. Returns: betas (`jnp.ndarray`): the betas used by the scheduler to step the model outputs """ def alpha_bar(time_step): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 betas = [] for i in range(num_diffusion_timesteps): t1 = i / num_diffusion_timesteps t2 = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) return jnp.array(betas, dtype=jnp.float32) @flax.struct.dataclass class DPMSolverMultistepSchedulerState: # setable values num_inference_steps: Optional[int] = None timesteps: Optional[jnp.ndarray] = None # running values model_outputs: Optional[jnp.ndarray] = None lower_order_nums: Optional[int] = None step_index: Optional[int] = None prev_timestep: Optional[int] = None cur_sample: Optional[jnp.ndarray] = None @classmethod def create(cls, num_train_timesteps: int): return cls(timesteps=jnp.arange(0, num_train_timesteps)[::-1]) @dataclass class FlaxDPMSolverMultistepSchedulerOutput(FlaxSchedulerOutput): state: DPMSolverMultistepSchedulerState class FlaxDPMSolverMultistepScheduler(FlaxSchedulerMixin, ConfigMixin): """ DPM-Solver (and the improved version DPM-Solver++) is a fast dedicated high-order solver for diffusion ODEs with the convergence order guarantee. Empirically, sampling by DPM-Solver with only 20 steps can generate high-quality samples, and it can generate quite good samples even in only 10 steps. For more details, see the original paper: https://arxiv.org/abs/2206.00927 and https://arxiv.org/abs/2211.01095 Currently, we support the multistep DPM-Solver for both noise prediction models and data prediction models. We recommend to use `solver_order=2` for guided sampling, and `solver_order=3` for unconditional sampling. We also support the "dynamic thresholding" method in Imagen (https://arxiv.org/abs/2205.11487). For pixel-space diffusion models, you can set both `algorithm_type="dpmsolver++"` and `thresholding=True` to use the dynamic thresholding. Note that the thresholding method is unsuitable for latent-space diffusion models (such as stable-diffusion). [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and [`~SchedulerMixin.from_pretrained`] functions. For more details, see the original paper: https://arxiv.org/abs/2206.00927 and https://arxiv.org/abs/2211.01095 Args: num_train_timesteps (`int`): number of diffusion steps used to train the model. beta_start (`float`): the starting `beta` value of inference. beta_end (`float`): the final `beta` value. beta_schedule (`str`): the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear`, `scaled_linear`, or `squaredcos_cap_v2`. trained_betas (`np.ndarray`, optional): option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. solver_order (`int`, default `2`): the order of DPM-Solver; can be `1` or `2` or `3`. We recommend to use `solver_order=2` for guided sampling, and `solver_order=3` for unconditional sampling. prediction_type (`str`, default `epsilon`): indicates whether the model predicts the noise (epsilon), or the data / `x0`. One of `epsilon`, `sample`, or `v-prediction`. thresholding (`bool`, default `False`): whether to use the "dynamic thresholding" method (introduced by Imagen, https://arxiv.org/abs/2205.11487). For pixel-space diffusion models, you can set both `algorithm_type=dpmsolver++` and `thresholding=True` to use the dynamic thresholding. Note that the thresholding method is unsuitable for latent-space diffusion models (such as stable-diffusion). dynamic_thresholding_ratio (`float`, default `0.995`): the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen (https://arxiv.org/abs/2205.11487). sample_max_value (`float`, default `1.0`): the threshold value for dynamic thresholding. Valid only when `thresholding=True` and `algorithm_type="dpmsolver++`. algorithm_type (`str`, default `dpmsolver++`): the algorithm type for the solver. Either `dpmsolver` or `dpmsolver++`. The `dpmsolver` type implements the algorithms in https://arxiv.org/abs/2206.00927, and the `dpmsolver++` type implements the algorithms in https://arxiv.org/abs/2211.01095. We recommend to use `dpmsolver++` with `solver_order=2` for guided sampling (e.g. stable-diffusion). solver_type (`str`, default `midpoint`): the solver type for the second-order solver. Either `midpoint` or `heun`. The solver type slightly affects the sample quality, especially for small number of steps. We empirically find that `midpoint` solvers are slightly better, so we recommend to use the `midpoint` type. lower_order_final (`bool`, default `True`): whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. We empirically find this trick can stabilize the sampling of DPM-Solver for steps < 15, especially for steps <= 10. """ _compatibles = _FLAX_COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy() _deprecated_kwargs = ["predict_epsilon"] @property def has_state(self): return True @register_to_config def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.0001, beta_end: float = 0.02, beta_schedule: str = "linear", trained_betas: Optional[jnp.ndarray] = None, solver_order: int = 2, prediction_type: str = "epsilon", thresholding: bool = False, dynamic_thresholding_ratio: float = 0.995, sample_max_value: float = 1.0, algorithm_type: str = "dpmsolver++", solver_type: str = "midpoint", lower_order_final: bool = True, **kwargs, ): message = ( "Please make sure to instantiate your scheduler with `prediction_type` instead. E.g. `scheduler =" " FlaxDPMSolverMultistepScheduler.from_pretrained(, prediction_type='epsilon')`." ) predict_epsilon = deprecate("predict_epsilon", "0.11.0", message, take_from=kwargs) if predict_epsilon is not None: self.register_to_config(prediction_type="epsilon" if predict_epsilon else "sample") if trained_betas is not None: self.betas = jnp.asarray(trained_betas) elif beta_schedule == "linear": self.betas = jnp.linspace(beta_start, beta_end, num_train_timesteps, dtype=jnp.float32) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. self.betas = jnp.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=jnp.float32) ** 2 elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule self.betas = betas_for_alpha_bar(num_train_timesteps) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") self.alphas = 1.0 - self.betas self.alphas_cumprod = jnp.cumprod(self.alphas, axis=0) # Currently we only support VP-type noise schedule self.alpha_t = jnp.sqrt(self.alphas_cumprod) self.sigma_t = jnp.sqrt(1 - self.alphas_cumprod) self.lambda_t = jnp.log(self.alpha_t) - jnp.log(self.sigma_t) # standard deviation of the initial noise distribution self.init_noise_sigma = 1.0 # settings for DPM-Solver if algorithm_type not in ["dpmsolver", "dpmsolver++"]: raise NotImplementedError(f"{algorithm_type} does is not implemented for {self.__class__}") if solver_type not in ["midpoint", "heun"]: raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}") def create_state(self): return DPMSolverMultistepSchedulerState.create(num_train_timesteps=self.config.num_train_timesteps) def set_timesteps( self, state: DPMSolverMultistepSchedulerState, num_inference_steps: int, shape: Tuple ) -> DPMSolverMultistepSchedulerState: """ Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. Args: state (`DPMSolverMultistepSchedulerState`): the `FlaxDPMSolverMultistepScheduler` state data class instance. num_inference_steps (`int`): the number of diffusion steps used when generating samples with a pre-trained model. shape (`Tuple`): the shape of the samples to be generated. """ timesteps = ( jnp.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps + 1) .round()[::-1][:-1] .astype(jnp.int32) ) return state.replace( num_inference_steps=num_inference_steps, timesteps=timesteps, model_outputs=jnp.zeros((self.config.solver_order,) + shape), lower_order_nums=0, step_index=0, prev_timestep=-1, cur_sample=jnp.zeros(shape), ) def convert_model_output( self, model_output: jnp.ndarray, timestep: int, sample: jnp.ndarray, ) -> jnp.ndarray: """ Convert the model output to the corresponding type that the algorithm (DPM-Solver / DPM-Solver++) needs. DPM-Solver is designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an integral of the data prediction model. So we need to first convert the model output to the corresponding type to match the algorithm. Note that the algorithm type and the model type is decoupled. That is to say, we can use either DPM-Solver or DPM-Solver++ for both noise prediction model and data prediction model. Args: model_output (`jnp.ndarray`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`jnp.ndarray`): current instance of sample being created by diffusion process. Returns: `jnp.ndarray`: the converted model output. """ # DPM-Solver++ needs to solve an integral of the data prediction model. if self.config.algorithm_type == "dpmsolver++": if self.config.prediction_type == "epsilon": alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] x0_pred = (sample - sigma_t * model_output) / alpha_t elif self.config.prediction_type == "sample": x0_pred = model_output elif self.config.prediction_type == "v_prediction": alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] x0_pred = alpha_t * sample - sigma_t * model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, " " or `v_prediction` for the FlaxDPMSolverMultistepScheduler." ) if self.config.thresholding: # Dynamic thresholding in https://arxiv.org/abs/2205.11487 dynamic_max_val = jnp.percentile( jnp.abs(x0_pred), self.config.dynamic_thresholding_ratio, axis=tuple(range(1, x0_pred.ndim)) ) dynamic_max_val = jnp.maximum( dynamic_max_val, self.config.sample_max_value * jnp.ones_like(dynamic_max_val) ) x0_pred = jnp.clip(x0_pred, -dynamic_max_val, dynamic_max_val) / dynamic_max_val return x0_pred # DPM-Solver needs to solve an integral of the noise prediction model. elif self.config.algorithm_type == "dpmsolver": if self.config.prediction_type == "epsilon": return model_output elif self.config.prediction_type == "sample": alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] epsilon = (sample - alpha_t * model_output) / sigma_t return epsilon elif self.config.prediction_type == "v_prediction": alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] epsilon = alpha_t * model_output + sigma_t * sample return epsilon else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, " " or `v_prediction` for the FlaxDPMSolverMultistepScheduler." ) def dpm_solver_first_order_update( self, model_output: jnp.ndarray, timestep: int, prev_timestep: int, sample: jnp.ndarray ) -> jnp.ndarray: """ One step for the first-order DPM-Solver (equivalent to DDIM). See https://arxiv.org/abs/2206.00927 for the detailed derivation. Args: model_output (`jnp.ndarray`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. prev_timestep (`int`): previous discrete timestep in the diffusion chain. sample (`jnp.ndarray`): current instance of sample being created by diffusion process. Returns: `jnp.ndarray`: the sample tensor at the previous timestep. """ t, s0 = prev_timestep, timestep m0 = model_output lambda_t, lambda_s = self.lambda_t[t], self.lambda_t[s0] alpha_t, alpha_s = self.alpha_t[t], self.alpha_t[s0] sigma_t, sigma_s = self.sigma_t[t], self.sigma_t[s0] h = lambda_t - lambda_s if self.config.algorithm_type == "dpmsolver++": x_t = (sigma_t / sigma_s) * sample - (alpha_t * (jnp.exp(-h) - 1.0)) * m0 elif self.config.algorithm_type == "dpmsolver": x_t = (alpha_t / alpha_s) * sample - (sigma_t * (jnp.exp(h) - 1.0)) * m0 return x_t def multistep_dpm_solver_second_order_update( self, model_output_list: jnp.ndarray, timestep_list: List[int], prev_timestep: int, sample: jnp.ndarray, ) -> jnp.ndarray: """ One step for the second-order multistep DPM-Solver. Args: model_output_list (`List[jnp.ndarray]`): direct outputs from learned diffusion model at current and latter timesteps. timestep (`int`): current and latter discrete timestep in the diffusion chain. prev_timestep (`int`): previous discrete timestep in the diffusion chain. sample (`jnp.ndarray`): current instance of sample being created by diffusion process. Returns: `jnp.ndarray`: the sample tensor at the previous timestep. """ t, s0, s1 = prev_timestep, timestep_list[-1], timestep_list[-2] m0, m1 = model_output_list[-1], model_output_list[-2] lambda_t, lambda_s0, lambda_s1 = self.lambda_t[t], self.lambda_t[s0], self.lambda_t[s1] alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0] sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0] h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1 r0 = h_0 / h D0, D1 = m0, (1.0 / r0) * (m0 - m1) if self.config.algorithm_type == "dpmsolver++": # See https://arxiv.org/abs/2211.01095 for detailed derivations if self.config.solver_type == "midpoint": x_t = ( (sigma_t / sigma_s0) * sample - (alpha_t * (jnp.exp(-h) - 1.0)) * D0 - 0.5 * (alpha_t * (jnp.exp(-h) - 1.0)) * D1 ) elif self.config.solver_type == "heun": x_t = ( (sigma_t / sigma_s0) * sample - (alpha_t * (jnp.exp(-h) - 1.0)) * D0 + (alpha_t * ((jnp.exp(-h) - 1.0) / h + 1.0)) * D1 ) elif self.config.algorithm_type == "dpmsolver": # See https://arxiv.org/abs/2206.00927 for detailed derivations if self.config.solver_type == "midpoint": x_t = ( (alpha_t / alpha_s0) * sample - (sigma_t * (jnp.exp(h) - 1.0)) * D0 - 0.5 * (sigma_t * (jnp.exp(h) - 1.0)) * D1 ) elif self.config.solver_type == "heun": x_t = ( (alpha_t / alpha_s0) * sample - (sigma_t * (jnp.exp(h) - 1.0)) * D0 - (sigma_t * ((jnp.exp(h) - 1.0) / h - 1.0)) * D1 ) return x_t def multistep_dpm_solver_third_order_update( self, model_output_list: jnp.ndarray, timestep_list: List[int], prev_timestep: int, sample: jnp.ndarray, ) -> jnp.ndarray: """ One step for the third-order multistep DPM-Solver. Args: model_output_list (`List[jnp.ndarray]`): direct outputs from learned diffusion model at current and latter timesteps. timestep (`int`): current and latter discrete timestep in the diffusion chain. prev_timestep (`int`): previous discrete timestep in the diffusion chain. sample (`jnp.ndarray`): current instance of sample being created by diffusion process. Returns: `jnp.ndarray`: the sample tensor at the previous timestep. """ t, s0, s1, s2 = prev_timestep, timestep_list[-1], timestep_list[-2], timestep_list[-3] m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3] lambda_t, lambda_s0, lambda_s1, lambda_s2 = ( self.lambda_t[t], self.lambda_t[s0], self.lambda_t[s1], self.lambda_t[s2], ) alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0] sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0] h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2 r0, r1 = h_0 / h, h_1 / h D0 = m0 D1_0, D1_1 = (1.0 / r0) * (m0 - m1), (1.0 / r1) * (m1 - m2) D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1) D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1) if self.config.algorithm_type == "dpmsolver++": # See https://arxiv.org/abs/2206.00927 for detailed derivations x_t = ( (sigma_t / sigma_s0) * sample - (alpha_t * (jnp.exp(-h) - 1.0)) * D0 + (alpha_t * ((jnp.exp(-h) - 1.0) / h + 1.0)) * D1 - (alpha_t * ((jnp.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2 ) elif self.config.algorithm_type == "dpmsolver": # See https://arxiv.org/abs/2206.00927 for detailed derivations x_t = ( (alpha_t / alpha_s0) * sample - (sigma_t * (jnp.exp(h) - 1.0)) * D0 - (sigma_t * ((jnp.exp(h) - 1.0) / h - 1.0)) * D1 - (sigma_t * ((jnp.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2 ) return x_t def step( self, state: DPMSolverMultistepSchedulerState, model_output: jnp.ndarray, timestep: int, sample: jnp.ndarray, return_dict: bool = True, ) -> Union[FlaxDPMSolverMultistepSchedulerOutput, Tuple]: """ Predict the sample at the previous timestep by DPM-Solver. Core function to propagate the diffusion process from the learned model outputs (most often the predicted noise). Args: state (`DPMSolverMultistepSchedulerState`): the `FlaxDPMSolverMultistepScheduler` state data class instance. model_output (`jnp.ndarray`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`jnp.ndarray`): current instance of sample being created by diffusion process. return_dict (`bool`): option for returning tuple rather than FlaxDPMSolverMultistepSchedulerOutput class Returns: [`FlaxDPMSolverMultistepSchedulerOutput`] or `tuple`: [`FlaxDPMSolverMultistepSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ prev_timestep = jax.lax.cond( state.step_index == len(state.timesteps) - 1, lambda _: 0, lambda _: state.timesteps[state.step_index + 1], (), ) model_output = self.convert_model_output(model_output, timestep, sample) model_outputs_new = jnp.roll(state.model_outputs, -1, axis=0) model_outputs_new = model_outputs_new.at[-1].set(model_output) state = state.replace( model_outputs=model_outputs_new, prev_timestep=prev_timestep, cur_sample=sample, ) def step_1(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray: return self.dpm_solver_first_order_update( state.model_outputs[-1], state.timesteps[state.step_index], state.prev_timestep, state.cur_sample, ) def step_23(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray: def step_2(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray: timestep_list = jnp.array([state.timesteps[state.step_index - 1], state.timesteps[state.step_index]]) return self.multistep_dpm_solver_second_order_update( state.model_outputs, timestep_list, state.prev_timestep, state.cur_sample, ) def step_3(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray: timestep_list = jnp.array( [ state.timesteps[state.step_index - 2], state.timesteps[state.step_index - 1], state.timesteps[state.step_index], ] ) return self.multistep_dpm_solver_third_order_update( state.model_outputs, timestep_list, state.prev_timestep, state.cur_sample, ) if self.config.solver_order == 2: return step_2(state) elif self.config.lower_order_final and len(state.timesteps) < 15: return jax.lax.cond( state.lower_order_nums < 2, step_2, lambda state: jax.lax.cond( state.step_index == len(state.timesteps) - 2, step_2, step_3, state, ), state, ) else: return jax.lax.cond( state.lower_order_nums < 2, step_2, step_3, state, ) if self.config.solver_order == 1: prev_sample = step_1(state) elif self.config.lower_order_final and len(state.timesteps) < 15: prev_sample = jax.lax.cond( state.lower_order_nums < 1, step_1, lambda state: jax.lax.cond( state.step_index == len(state.timesteps) - 1, step_1, step_23, state, ), state, ) else: prev_sample = jax.lax.cond( state.lower_order_nums < 1, step_1, step_23, state, ) state = state.replace( lower_order_nums=jnp.minimum(state.lower_order_nums + 1, self.config.solver_order), step_index=(state.step_index + 1), ) if not return_dict: return (prev_sample, state) return FlaxDPMSolverMultistepSchedulerOutput(prev_sample=prev_sample, state=state) def scale_model_input( self, state: DPMSolverMultistepSchedulerState, sample: jnp.ndarray, timestep: Optional[int] = None ) -> jnp.ndarray: """ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Args: state (`DPMSolverMultistepSchedulerState`): the `FlaxDPMSolverMultistepScheduler` state data class instance. sample (`jnp.ndarray`): input sample timestep (`int`, optional): current timestep Returns: `jnp.ndarray`: scaled input sample """ return sample def add_noise( self, original_samples: jnp.ndarray, noise: jnp.ndarray, timesteps: jnp.ndarray, ) -> jnp.ndarray: sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5 sqrt_alpha_prod = sqrt_alpha_prod.flatten() sqrt_alpha_prod = broadcast_to_shape_from_left(sqrt_alpha_prod, original_samples.shape) sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.0 sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() sqrt_one_minus_alpha_prod = broadcast_to_shape_from_left(sqrt_one_minus_alpha_prod, original_samples.shape) noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __len__(self): return self.config.num_train_timesteps