# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple, Union import torch from ...models import UNet2DModel from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput from ...schedulers import KarrasVeScheduler class KarrasVePipeline(DiffusionPipeline): r""" Stochastic sampling from Karras et al. [1] tailored to the Variance-Expanding (VE) models [2]. Use Algorithm 2 and the VE column of Table 1 from [1] for reference. [1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models." https://arxiv.org/abs/2206.00364 [2] Song, Yang, et al. "Score-based generative modeling through stochastic differential equations." https://arxiv.org/abs/2011.13456 Parameters: unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image. scheduler ([`KarrasVeScheduler`]): Scheduler for the diffusion process to be used in combination with `unet` to denoise the encoded image. """ # add type hints for linting unet: UNet2DModel scheduler: KarrasVeScheduler def __init__(self, unet: UNet2DModel, scheduler: KarrasVeScheduler): super().__init__() self.register_modules(unet=unet, scheduler=scheduler) @torch.no_grad() def __call__( self, batch_size: int = 1, num_inference_steps: int = 50, generator: Optional[torch.Generator] = None, output_type: Optional[str] = "pil", return_dict: bool = True, **kwargs, ) -> Union[Tuple, ImagePipelineOutput]: r""" Args: batch_size (`int`, *optional*, defaults to 1): The number of images to generate. generator (`torch.Generator`, *optional*): A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple. Returns: [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images. """ img_size = self.unet.config.sample_size shape = (batch_size, 3, img_size, img_size) model = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) sample = torch.randn(*shape) * self.scheduler.init_noise_sigma sample = sample.to(self.device) self.scheduler.set_timesteps(num_inference_steps) for t in self.progress_bar(self.scheduler.timesteps): # here sigma_t == t_i from the paper sigma = self.scheduler.schedule[t] sigma_prev = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat sample_hat, sigma_hat = self.scheduler.add_noise_to_input(sample, sigma, generator=generator) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. model_output = (sigma_hat / 2) * model((sample_hat + 1) / 2, sigma_hat / 2).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev step_output = self.scheduler.step(model_output, sigma_hat, sigma_prev, sample_hat) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. model_output = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2, sigma_prev / 2).sample step_output = self.scheduler.step_correct( model_output, sigma_hat, sigma_prev, sample_hat, step_output.prev_sample, step_output["derivative"], ) sample = step_output.prev_sample sample = (sample / 2 + 0.5).clamp(0, 1) image = sample.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": image = self.numpy_to_pil(sample) if not return_dict: return (image,) return ImagePipelineOutput(images=image)