# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import numpy as np import torch from torch import nn def get_timestep_embedding( timesteps: torch.Tensor, embedding_dim: int, flip_sin_to_cos: bool = False, downscale_freq_shift: float = 1, scale: float = 1, max_period: int = 10000, ): """ This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings. :param timesteps: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an [N x dim] Tensor of positional embeddings. """ assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array" half_dim = embedding_dim // 2 exponent = -math.log(max_period) * torch.arange( start=0, end=half_dim, dtype=torch.float32, device=timesteps.device ) exponent = exponent / (half_dim - downscale_freq_shift) emb = torch.exp(exponent) emb = timesteps[:, None].float() * emb[None, :] # scale embeddings emb = scale * emb # concat sine and cosine embeddings emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1) # flip sine and cosine embeddings if flip_sin_to_cos: emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1) # zero pad if embedding_dim % 2 == 1: emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) return emb class TimestepEmbedding(nn.Module): def __init__(self, in_channels: int, time_embed_dim: int, act_fn: str = "silu", out_dim: int = None): super().__init__() self.linear_1 = nn.Linear(in_channels, time_embed_dim) self.act = None if act_fn == "silu": self.act = nn.SiLU() elif act_fn == "mish": self.act = nn.Mish() if out_dim is not None: time_embed_dim_out = out_dim else: time_embed_dim_out = time_embed_dim self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out) def forward(self, sample): sample = self.linear_1(sample) if self.act is not None: sample = self.act(sample) sample = self.linear_2(sample) return sample class Timesteps(nn.Module): def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float): super().__init__() self.num_channels = num_channels self.flip_sin_to_cos = flip_sin_to_cos self.downscale_freq_shift = downscale_freq_shift def forward(self, timesteps): t_emb = get_timestep_embedding( timesteps, self.num_channels, flip_sin_to_cos=self.flip_sin_to_cos, downscale_freq_shift=self.downscale_freq_shift, ) return t_emb class GaussianFourierProjection(nn.Module): """Gaussian Fourier embeddings for noise levels.""" def __init__( self, embedding_size: int = 256, scale: float = 1.0, set_W_to_weight=True, log=True, flip_sin_to_cos=False ): super().__init__() self.weight = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False) self.log = log self.flip_sin_to_cos = flip_sin_to_cos if set_W_to_weight: # to delete later self.W = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False) self.weight = self.W def forward(self, x): if self.log: x = torch.log(x) x_proj = x[:, None] * self.weight[None, :] * 2 * np.pi if self.flip_sin_to_cos: out = torch.cat([torch.cos(x_proj), torch.sin(x_proj)], dim=-1) else: out = torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1) return out class ImagePositionalEmbeddings(nn.Module): """ Converts latent image classes into vector embeddings. Sums the vector embeddings with positional embeddings for the height and width of the latent space. For more details, see figure 10 of the dall-e paper: https://arxiv.org/abs/2102.12092 For VQ-diffusion: Output vector embeddings are used as input for the transformer. Note that the vector embeddings for the transformer are different than the vector embeddings from the VQVAE. Args: num_embed (`int`): Number of embeddings for the latent pixels embeddings. height (`int`): Height of the latent image i.e. the number of height embeddings. width (`int`): Width of the latent image i.e. the number of width embeddings. embed_dim (`int`): Dimension of the produced vector embeddings. Used for the latent pixel, height, and width embeddings. """ def __init__( self, num_embed: int, height: int, width: int, embed_dim: int, ): super().__init__() self.height = height self.width = width self.num_embed = num_embed self.embed_dim = embed_dim self.emb = nn.Embedding(self.num_embed, embed_dim) self.height_emb = nn.Embedding(self.height, embed_dim) self.width_emb = nn.Embedding(self.width, embed_dim) def forward(self, index): emb = self.emb(index) height_emb = self.height_emb(torch.arange(self.height, device=index.device).view(1, self.height)) # 1 x H x D -> 1 x H x 1 x D height_emb = height_emb.unsqueeze(2) width_emb = self.width_emb(torch.arange(self.width, device=index.device).view(1, self.width)) # 1 x W x D -> 1 x 1 x W x D width_emb = width_emb.unsqueeze(1) pos_emb = height_emb + width_emb # 1 x H x W x D -> 1 x L xD pos_emb = pos_emb.view(1, self.height * self.width, -1) emb = emb + pos_emb[:, : emb.shape[1], :] return emb