import gradio as gr import pandas as pd import torch from torch.utils.data import Dataset, DataLoader from transformers import AutoTokenizer, AutoModelForSequenceClassification from transformers import BertModel # ignore warnings import warnings warnings.filterwarnings("ignore") def infer(text): output_str = '' for col in ['position_x', 'position_y', 'force', 'velocity_xy', 'velocity_z']: model_path = f'models/bert/{col}' tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForSequenceClassification.from_pretrained(model_path) model.eval() encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0].detach().cpu().numpy()[0] answer = ['-1', '0', '1'][scores.argmax()] output_str += f'{col}: {answer}\n' return output_str iface = gr.Interface(fn=infer, inputs="text", outputs="text") iface.launch()