import icevision from icevision.all import * import torch import gradio as gr import PIL from PIL import Image # Cargamos el learner learner = torch.load('fasterRCNNKangaroo_obligatorio.pth',map_location='cpu') # Definimos una funciĆ³n que se encarga de llevar a cabo las predicciones def predict(img): #return img size = 384 class_map = ClassMap(['kangaroo']) infer_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(size),tfms.A.Normalize()]) pred_dict = models.torchvision.faster_rcnn.end2end_detect(img, infer_tfms, learner.to("cpu"), class_map=class_map, detection_threshold=0.5) #return pred_dict['img'] return img # Creamos la interfaz y la lanzamos. gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.Image(type="pil",label='Imagen resultado'),examples=['00001.jpg','00002.jpg']).launch(share=False)