import torch import torch.nn.functional as F import logging import os import os.path as osp import sys CODE_SPACE=os.path.dirname(os.path.dirname(os.path.abspath(__file__))) try: from mmcv.utils import Config, DictAction except: from mmengine import Config, DictAction from mono.utils.logger import setup_logger import glob from mono.utils.comm import init_env from mono.model.monodepth_model import get_configured_monodepth_model from mono.utils.running import load_ckpt from mono.utils.do_test import transform_test_data_scalecano, get_prediction from mono.utils.custom_data import load_from_annos, load_data from mono.utils.avg_meter import MetricAverageMeter from mono.utils.visualization import save_val_imgs, create_html, save_raw_imgs, save_normal_val_imgs import cv2 from tqdm import tqdm import numpy as np from PIL import Image import matplotlib.pyplot as plt from mono.utils.unproj_pcd import reconstruct_pcd, save_point_cloud from mono.utils.transform import gray_to_colormap from mono.utils.visualization import vis_surface_normal import gradio as gr #torch.hub.download_url_to_file('https://images.unsplash.com/photo-1437622368342-7a3d73a34c8f', 'turtle.jpg') #torch.hub.download_url_to_file('https://images.unsplash.com/photo-1519066629447-267fffa62d4b', 'lions.jpg') cfg_large = Config.fromfile('./mono/configs/HourglassDecoder/vit.raft5.large.py') model_large = get_configured_monodepth_model(cfg_large, ) model_large, _, _, _ = load_ckpt('./weight/metric_depth_vit_large_800k.pth', model_large, strict_match=False) model_large.eval() cfg_small = Config.fromfile('./mono/configs/HourglassDecoder/vit.raft5.small.py') model_small = get_configured_monodepth_model(cfg_small, ) model_small, _, _, _ = load_ckpt('./weight/metric_depth_vit_small_800k.pth', model_small, strict_match=False) model_small.eval() device = "cuda" model_large.to(device) model_small.to(device) def depth_normal(img, model_selection="vit-small"): if model_selection == "vit-small": model = model_small cfg = cfg_small elif model_selection == "vit-large": model = model_large cfg = cfg_large else: raise NotImplementedError cv_image = np.array(img) img = cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB) intrinsic = [1000.0, 1000.0, img.shape[1]/2, img.shape[0]/2] rgb_input, cam_models_stacks, pad, label_scale_factor = transform_test_data_scalecano(img, intrinsic, cfg.data_basic) with torch.no_grad(): pred_depth, pred_depth_scale, scale, output = get_prediction( model = model, input = rgb_input, cam_model = cam_models_stacks, pad_info = pad, scale_info = label_scale_factor, gt_depth = None, normalize_scale = cfg.data_basic.depth_range[1], ori_shape=[img.shape[0], img.shape[1]], ) pred_normal = output['normal_out_list'][0][:, :3, :, :] H, W = pred_normal.shape[2:] pred_normal = pred_normal[:, :, pad[0]:H-pad[1], pad[2]:W-pad[3]] pred_depth = pred_depth.squeeze().cpu().numpy() pred_depth[pred_depth<0] = 0 pred_color = gray_to_colormap(pred_depth) pred_normal = pred_normal.squeeze() if pred_normal.size(0) == 3: pred_normal = pred_normal.permute(1,2,0) pred_color_normal = vis_surface_normal(pred_normal) ##formatted = (output * 255 / np.max(output)).astype('uint8') img = Image.fromarray(pred_color) img_normal = Image.fromarray(pred_color_normal) return img, img_normal #inputs = gr.inputs.Image(type='pil', label="Original Image") #depth = gr.outputs.Image(type="pil",label="Output Depth") #normal = gr.outputs.Image(type="pil",label="Output Normal") title = "Metric3D" description = "Gradio demo for Metric3D v1/v2 which takes in a single image for computing metric depth and surface normal. To use it, simply upload your image, or click one of the examples to load them. Learn more from our paper linked below." article = "

Metric3D: Towards Zero-shot Metric 3D Prediction from A Single Image | Github Repo

" examples = [ #["turtle.jpg"], #["lions.jpg"] #["files/gundam.jpg"], ["files/museum.jpg"], ["files/terra.jpg"], ["files/underwater.jpg"], ["files/venue.jpg"] ] gr.Interface( depth_normal, inputs=[gr.Image(type='pil', label="Original Image"), gr.Dropdown(["vit-small", "vit-large"], label="Model", info="Will support more models later!")], outputs=[gr.Image(type="pil",label="Output Depth"), gr.Image(type="pil",label="Output Normal")], title=title, description=description, article=article, examples=examples, analytics_enabled=False).launch()