import gradio as gr import tensorflow as tf import numpy as np from PIL import Image model_path = "pokemon_transferlearning.keras" model = tf.keras.models.load_model(model_path) # Define the core prediction function def predict_pokemon(image): # Preprocess image print(type(image)) image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image image = image.resize((150, 150)) #resize the image to 28x28 and converts it to gray scale image = np.array(image) image = np.expand_dims(image, axis=0) # same as image[None, ...] # Predict prediction = model.predict(image) # No need to apply sigmoid, as the output layer already uses softmax # Convert the probabilities to rounded values prediction = np.round(prediction, 2) # Separate the probabilities for each class p_charmander = prediction[0][0] # Probability for class 'charmander' p_mewto = prediction[0][1] # Probability for class 'mewto' p_squirtle = prediction[0][2] # Probability for class 'squirtle' return {'charmander': p_charmander, 'mewto': p_mewto, 'squirtle': p_squirtle} # Create the Gradio interface input_image = gr.Image() iface = gr.Interface( fn=predict_pokemon, inputs=input_image, outputs=gr.Label(), examples=["images/charmander1.png", "images/charmander2.png", "images/charmander3.jpg", "images/mewto.jpg", "images/mewto2.jpg", "images/mewto4.png", "images/squirtle1.png", "images/squirtle2.jpg", "images/squirtle3.jpg"], description="TEST.") iface.launch()