import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, LSTM import tensorflow as tf import streamlit as st def predict_stock(csv_file): # Load and preprocess data dataset = pd.read_csv(csv_file, usecols=[1], engine='python', encoding="big5") dataset = dataset.values.astype('float32') # Normalize the dataset scaler = MinMaxScaler(feature_range=(0, 1)) dataset = scaler.fit_transform(dataset) # Split into train and test sets train_size = int(len(dataset) * 0.8) train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:] # Create dataset function def create_dataset(dataset, look_back=1): dataX, dataY = [], [] for i in range(len(dataset)-look_back-1): a = dataset[i:(i+look_back), 0] dataX.append(a) dataY.append(dataset[i + look_back, 0]) return np.array(dataX), np.array(dataY) # Prepare data for LSTM look_back = 1 trainX, trainY = create_dataset(train, look_back) testX, testY = create_dataset(test, look_back) trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1])) testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1])) # Create and fit the LSTM network model = Sequential() model.add(LSTM(4, input_shape=(1, look_back))) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') model.fit(trainX, trainY, epochs=50, batch_size=1, verbose=0) # Make predictions trainPredict = model.predict(trainX) testPredict = model.predict(testX) # Invert predictions trainPredict = scaler.inverse_transform(trainPredict) trainY = scaler.inverse_transform([trainY]) testPredict = scaler.inverse_transform(testPredict) testY = scaler.inverse_transform([testY]) # Calculate RMSE trainScore = np.sqrt(mean_squared_error(trainY[0], trainPredict[:,0])) testScore = np.sqrt(mean_squared_error(testY[0], testPredict[:,0])) # Prepare plot data trainPredictPlot = np.empty_like(dataset) trainPredictPlot[:, :] = np.nan trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict testPredictPlot = np.empty_like(dataset) testPredictPlot[:, :] = np.nan testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict # Create plot fig, ax = plt.subplots(figsize=(12, 8)) ax.plot(scaler.inverse_transform(dataset), label='Original Data', color='blue') ax.plot(trainPredictPlot, label='Training Predictions', linestyle='--', color='green') ax.plot(testPredictPlot, label='Test Predictions', linestyle='--', color='red') ax.set_xlabel('Time') ax.set_ylabel('Stock Price') ax.set_title('Stock Price Prediction') ax.legend() ax.grid(True, linestyle='--', alpha=0.7) return fig, trainScore, testScore # Streamlit UI st.set_page_config(page_title="Stock Price Prediction with LSTM", layout="wide") st.title("Stock Price Prediction with LSTM") st.write("Upload the 2330TW.csv file to predict stock prices using LSTM.") uploaded_file = st.file_uploader("Choose a CSV file", type="csv") if uploaded_file is not None: with st.spinner('Predicting...'): fig, train_score, test_score = predict_stock(uploaded_file) st.pyplot(fig) col1, col2 = st.columns(2) with col1: st.metric("Train Score (RMSE)", f"{train_score:.2f}") with col2: st.metric("Test Score (RMSE)", f"{test_score:.2f}") st.markdown("---") st.write("Created with ❤️ using Streamlit")