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%'ithin the framework of the general theory of relativity, it is proposed to introduce at each
point of space-time a Euclidean metric tensor y» in addition to the usual Riemannian metric
tensor g». In this way one imparts tensor character to quantities which in the usual form of the
theory do not have it. For example, one can obtain a gravitational energy-momentum density
tensor in place of the usual pseudo-tensor. Furthermore one can impose four additional co-
variant conditions on the gravitational field and thus restrict the form of the solution for the
field corresponding to a given physical situation.

G„„=—8'T„„, (2)

where T„„ is the energy-momentum density
tensor, and

~P 2R (3)

with 8„, the contracted Riemann-Christoffel
tensor.

The tensor G» satisfies the identity

G„; —=0, (4)

where (;) denotes covariant differentiation based
on g„„(g-differentiation). This permits setting
G„„proportional to T» which is taken to satisfy
the equation (expressing the laws of motion of
matter or energy)

TR, =0.

$2

It is now proposed to introduce at every
point of space-time, along with the metric tensor

g», a second metric tensor y„, corresponding to
flat space, i.e. , for which the Riemann-Christoffel
tensor vanishes identically everywhere. This may
be interpreted in various ways. For instance, we

' A. Einstein, Ann. d. Physik 49, 769 (1916).

''N the general theory of relativity, Einstein'
~ - makes use of Riemannian geometry, charac-
terized by the existence of an invariant interval
or line element ds, given by

ds'=g dx~dx"

where g„, is the metric tensor and (x',x', x',x')
are the coordinates in an arbitrary coordinate
system. The metric tensor is determined by the
law of gravitation:

may suppose that we map the Riemannian space
with metric g„„on a flat space with metric y„, and
assign the. same values to the coordinates of
corresponding points. Or we may say that the
two metrics side by side represent a comparison
of the given space with the space one would
have if the gravitational field were removed. It
should be emphasized that in introducing the
p„„we are not postulating here any new proper-
ties of the space.

In this way one can define a Euclidean line
element analogous to (1)

do'2 =y„„dx"dx"

Moreover one can now define covariant differ-
entiation based on y„, (y-differentiation), which
will be denoted by (,). Since the Riemann-
Christoffel tensor formed from y„, has been
assumed to vanish, it follows that one can
interchange the order of y-differentiation, so
that the latter obeys all the rules of ordinary
differentiation, except that the p-derivatives of
y„„vanish. Indeed it is always possible to choose
a coordinate system (special relativity) such
that the components y„„are constant and
p-differentiation reduces to ordinary; but it may
not always be convenient to choose such a system.

Let us next consider h~'„„defined by

where I „"„I is the Christoffel 3-index symbol
used in g-differentiation and I' „, that occurring
in y-differentiation. This can be shown to be a
tensor and is found to be given by

pv 2g (guava, v+gva, p gpv, a)
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(13)

(14)

(15)

G„+G&„~o
—G

~s —K,p/ K)

(~G „), ——,'«G ~g.p, =0.

R"= ~ ";+~ -. ,
~—-~~'"+~ ~.~'- (9) or, since

This relation is interesting in that R„„ is seen
to be obtainable from the tensor 6"„„by tensor
operations, i.e. , R„, is a tensor function of g„„.

Throughout this paper, unless otherwise speci-
fied, indices are raised and lowered by means
of g~v ~

Now (11) can be shown to be equivalent to
the relation

Comparing (9) with the usual expression for
R„„one sees that {„„}has been replaced by
6 „,and ordinary differentiation by y-differentia-
tion. This type of correspondence turns out to be
quite general. It appears that one can rewrite all

the quantities occurring in relativity theory so
that {„"„}is replaced by 6"„„,an ordinary deriva-
tive by a y-derivative (in particular, Bg„„/Bx' by
g„„,,) and ( —g)l by

KG~ = B(LK)/Bg [8(LK)/kg„„,] .., .(16)

and from this one obtains (using integration by
parts)

KG &g.&
„——{LrP„[8(Lr)—/Bg. s&,jg.q,„},&„(17)

which is to be substituted in (15). If we now

define as the gravitational energy-momentum
density tensor,

«= (g/v)', (10)

where g and y are the determinants of g„„and y„„,
respectively. Since g„„,, is a tensor and I~: a scalar,
it follows that some quantities, on being re-
written in this way, take on a tensor character,
although they do not have it in the usual form
of the theory.

To illustrate this point, the following example
may be useful to compare with the analogous
calculation usually made. ' One can show that
the gravita. tional Eqs. (2) are connected with a
variational principle

1
t,"= {Lb„' [B(Lr.)/—~Bg.q«jg. p,„},, (18)

16'

we can write (15) or (4) as

[ (T«„"+t„")j «=0.

Or, taking

(20)T' ~=INST ~ t' '=et '
P & P Ij

we can write

If in the usual expression' defining R„„one energy-momentum density tensor (analogous to
substitutes (7), it is found that, as a consequence the pseudo-tensor of Einstein). One writes (Eq.
of the Euclidean character of y„„,one can write (4))

5 IL( g)ldr{ =—& i~ L—K( —y)'dr
})}{

(7' «+~' «) 0 (21)

where

=)fG&'bg„„( g) 'dr, —

(12)

d 7 =dx'dx'dx'dx4,

L =g"(6 &,~~.„a-,~~„„), —

By a suitable coordinate transformation, one can
put the left-hand member into the form of an
ordinary divergence. The fact that t'„~ is a tensor
serves to remove some objections that had been

raised in the past. 4

and only the components of g„„are varied (with
the variations vanishing on the boundaries of
the region of integration). This function I is a
scalar. From it one can derive a gravitational

It is to be seen that, in general, the quantities
in the usual form of the relativity theory can be
considered as arising from the corresponding
ones here, through the special choice of y„„,

' E.g. , L. P. Eisenhart, Riemannian Geometry (Princeton,
1926), p. 21.' Reference 1, p. 804, and H. Weyl, Raum Zeit Materie
(Berlin, 1923), p. 272.

y„„=constant.

4 H. Bauer, Physik. Zeits. 19, 163 (1918).

(22)
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However, if (22) is to hold for all coordinate
systems, p„, cannot be a tensor. Consequently
the quantities which depend on y„, lose their
tensor character. Thus the gravitational tensor
t„" of (18) goes over into the pseudo-tensor in
the Einstein theory. On the other hand, R„„ is
independent of y„„and hence remains a tensor.
Obviously, if one wishes to maintain the tensor
character of quantities depending on y„„one must
give up (22) and allow p„„ to transform as a
tensor under coordinate transformations.

Although g„„and y„„have been considered as
existing side by side, so far nothing has been
said about any relation between them. Actually
one would expect to have some relation between
them, for it seems reasonable that, if the gravita-
tional field is made to vanish, g„, should go over
into p„,. Such a relation can be obtained by
imposing four additional covariant conditions on
the field. This can be done because of the set
of identities (4) existing among the field equa-
tions. In working with the linear approximation
of the gravitational equations, Einstein' similarly
added four conditions on the field for the purpose
of eliminating (or reducing) apparent fields
arising from infinitesimal coordinate transforma-
tions. It has hitherto not been possible to set
up corresponding (covariant) conditions for the
exact equations. In the present form of the
theory this can be done, and it is these equations
that provide the relation between g„, and y„,.
They should serve to remove, or at least restrict,
the ambiguity in the form of a solution arising
from the possibility of coordinate transforma-
tions which go over into the identical trans-
formation in the absence of a field.

For example, the static spherically symmetric solution
of the gravitational equations in free space can be written
in a number of forms depending on the choice of the radial
variable r, it being asserted that one cannot know which
choice corresponds to the variable r in flat space. The
additional conditions would serve to single out one of the
various possibilities.

One reasonable set of conditions can be ob-
tained from the following considerations:

One can rewrite the expression (9) for R„„ in

' A. Einstein, Berl. Ber. , p. 688 (1916).

the form

where
—6 „pA"',p —6 „pA&* p", (23)

g"~—g „,p «,„—/», (24)

and an asterisk with an index indicates raising
or lowering it with g„,.

This suggests taking as additional conditions

5„=0. (25)

In consequence, the right-hand member of (23)
is simplified, only the first term now containing
second derivatives. It can be verified that the
conditions (25) in first approximation are the
same as those imposed by Einstein in the case of
the linear equations.

The static spherically symmetric solution of
the field equations in free space

RR =0 (26)

together with (25), is found to be

r+rn
ds'= — dr' —(r+m) (d0'+sin Od@')

+ dt', (27)
r+m

with the usual notation, if one takes

do' = dr' r'(do—'+ sin—'0d gP)+ dt' (28).
Another possible set of conditions can be obtained based

upon taking
~=1. (29)

This serves to simplify many of the formulas. It should be
noted that this differs very essentially from the condition

g = —1, often used, in that it is not affected by coordinate
transformations. Three further conditions are required. One
might take (as being equivalent to three conditions)

S„,„—S„,„=0. (30)

6 K. Schwarzschild, Berl. Ber., p. 189 (1916).
7 E. Schrodinger, Physik. Zeits. 19, 4 (1918).

A. Einstein, Physik. Zeits. 19, 115 (1918); Berl. Ber.,
p. 448 (1918).

In this case if one takes for do-' the expression (28),
the static spherically symmetric solution has the Schwarz-
schild' form:

ds'= —(1—2m)r) 'dr'
—r'(do'+ sin' 8dqP) + (1 —2m/r) dt' (31)

However this solution leads to the difficulty pointed out by
Schrodinger (a not very serious difficulty, however') that
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the components of t„"all vanish for r &2m. If one wishes to
avoid this, one must give up (29) and (30).

Enough has been given to show that there are
advantages from the formal point of view in

introducing the Euclidean y„„ into the general
relativity theory. It imparts tensor character to
quantities which otherwise do not have it, and
allows additional conditions to be imposed on

the field so as to restrict the form of the solution
for a given physical situation.

In conclusion, it is necessary to point out that,
having once introduced y„, into the theory, one
has a great number of new tensors and scalars at
one's disposal. One can, therefore, set up other
field equations than (2). It is possible that some
of these may be more satisfactory for the descrip-
tion of nature. Further investigation is here
required.
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The possibility is considered of interpreting the formalism of the general theory of relativity
in terms of Hat space, the fundamental tensor g„„being regarded as describing the gravitational
field but having no direct connection with geometry, The resulting theory in general leads
to the same predictions as the Einstein theory, but there are cases where the predictions
differ. The present theory may explain the principal results obtained by D. C. Miller in his
"ether-drift" experiments. The implications of the theory for cosmology are briefly touched
upon.

'N a previous paper' (hereafter referred to as I)
- - it was shown that it is useful to introduce
into the general theory of relativity the concept
of the existence at each point of space-time of a
Euclidean metric tensor y„, in addition to the
usual Riemannian metric tensor g„,. From the
standpoint of the general theory of relativity, one
must look upon y„„as a fiction introduced for
mathematical convenience. However, the ques-
tion arises whether it may not be possible to
adopt a different point of view, one in which

the metric tensor y„„ is given a real physical
significance as describing the geometrical proper-
ties of space, which is therefore taken to be flat,
whereas the tensor g„„ is to be regarded as
describing the gravitational field. '

It has been pointed out in I that the introduc-
tion of p„, leads to the possibility of other laws

N. Rosen, Phys. Rev. 57', 146 (1940).' In some respects this resembles the theory of gravita-
tion proposed by Nordstrom (cf. report by M. v. Laue,
Jahrbuch f. Rad. u. El. 14, 263 (1917)).It will be seen that
there are important differences, however.

than those adopted in general relativity. In the
present paper, however, no attempt will be made
to change the laws of the latter, since they form
a self-consistent system and have proved to be
quite satisfactory for the description of large
scale phenomena, at any rate.

As far as the field equations are concerned, it
is immaterial what interpretation one gives to
the variables involved. This is not the case with
the equations of motion. Let us therefore consider
the law of motion for a particie in the field.
The latter is given in the general theory of
relativity by the equation of the geodesic'

I xP p, dx dx&

+ — =0,
ds' n P ds ds

where ds is the line element, defined in terms of
the tensor g„„, (I (1)). Let us now introduce as
independent variable the Euclidean line element

' A. Einstein, Ann. d. Physik 49, 769 (1916).


