import argparse import os import torch import yaml import torch.nn as nn from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter from tqdm import tqdm from utils.model import get_model, get_vocoder, get_param_num from utils.tools import to_device, log, synth_one_sample from model import FastSpeech2Loss from dataset import Dataset from evaluate import evaluate device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def main(args, configs): print("Prepare training ...") preprocess_config, model_config, train_config = configs # Get dataset dataset = Dataset( "train.txt", preprocess_config, train_config, sort=True, drop_last=True ) batch_size = train_config["optimizer"]["batch_size"] group_size = 4 # Set this larger than 1 to enable sorting in Dataset assert batch_size * group_size < len(dataset) loader = DataLoader( dataset, batch_size=batch_size * group_size, shuffle=True, collate_fn=dataset.collate_fn, ) # Prepare model model, optimizer = get_model(args, configs, device, train=True) model = nn.DataParallel(model) num_param = get_param_num(model) Loss = FastSpeech2Loss(preprocess_config, model_config).to(device) print("Number of FastSpeech2 Parameters:", num_param) # Load vocoder vocoder = get_vocoder(model_config, device) # Init logger for p in train_config["path"].values(): os.makedirs(p, exist_ok=True) train_log_path = os.path.join(train_config["path"]["log_path"], "train") val_log_path = os.path.join(train_config["path"]["log_path"], "val") os.makedirs(train_log_path, exist_ok=True) os.makedirs(val_log_path, exist_ok=True) train_logger = SummaryWriter(train_log_path) val_logger = SummaryWriter(val_log_path) # Training step = args.restore_step + 1 epoch = 1 grad_acc_step = train_config["optimizer"]["grad_acc_step"] grad_clip_thresh = train_config["optimizer"]["grad_clip_thresh"] total_step = train_config["step"]["total_step"] log_step = train_config["step"]["log_step"] save_step = train_config["step"]["save_step"] synth_step = train_config["step"]["synth_step"] val_step = train_config["step"]["val_step"] outer_bar = tqdm(total=total_step, desc="Training", position=0) outer_bar.n = args.restore_step outer_bar.update() while True: inner_bar = tqdm(total=len(loader), desc="Epoch {}".format(epoch), position=1) for batchs in loader: for batch in batchs: batch = to_device(batch, device) # Forward output = model(*(batch[2:])) # Cal Loss losses = Loss(batch, output) total_loss = losses[0] # Backward total_loss = total_loss / grad_acc_step total_loss.backward() if step % grad_acc_step == 0: # Clipping gradients to avoid gradient explosion nn.utils.clip_grad_norm_(model.parameters(), grad_clip_thresh) # Update weights optimizer.step_and_update_lr() optimizer.zero_grad() if step % log_step == 0: losses = [l.item() for l in losses] message1 = "Step {}/{}, ".format(step, total_step) message2 = "Total Loss: {:.4f}, Mel Loss: {:.4f}, Mel PostNet Loss: {:.4f}, Pitch Loss: {:.4f}, Energy Loss: {:.4f}, Duration Loss: {:.4f}".format( *losses ) with open(os.path.join(train_log_path, "log.txt"), "a") as f: f.write(message1 + message2 + "\n") outer_bar.write(message1 + message2) log(train_logger, step, losses=losses) if step % synth_step == 0: fig, wav_reconstruction, wav_prediction, tag = synth_one_sample( batch, output, vocoder, model_config, preprocess_config, ) log( train_logger, fig=fig, tag="Training/step_{}_{}".format(step, tag), ) sampling_rate = preprocess_config["preprocessing"]["audio"][ "sampling_rate" ] log( train_logger, audio=wav_reconstruction, sampling_rate=sampling_rate, tag="Training/step_{}_{}_reconstructed".format(step, tag), ) log( train_logger, audio=wav_prediction, sampling_rate=sampling_rate, tag="Training/step_{}_{}_synthesized".format(step, tag), ) if step % val_step == 0: model.eval() message = evaluate(model, step, configs, val_logger, vocoder) with open(os.path.join(val_log_path, "log.txt"), "a") as f: f.write(message + "\n") outer_bar.write(message) model.train() if step % save_step == 0: torch.save( { "model": model.module.state_dict(), "optimizer": optimizer._optimizer.state_dict(), }, os.path.join( train_config["path"]["ckpt_path"], "{}.pth.tar".format(step), ), ) if step == total_step: quit() step += 1 outer_bar.update(1) inner_bar.update(1) epoch += 1 if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--restore_step", type=int, default=0) parser.add_argument( "-p", "--preprocess_config", type=str, required=True, help="path to preprocess.yaml", ) parser.add_argument( "-m", "--model_config", type=str, required=True, help="path to model.yaml" ) parser.add_argument( "-t", "--train_config", type=str, required=True, help="path to train.yaml" ) args = parser.parse_args() # Read Config preprocess_config = yaml.load( open(args.preprocess_config, "r"), Loader=yaml.FullLoader ) model_config = yaml.load(open(args.model_config, "r"), Loader=yaml.FullLoader) train_config = yaml.load(open(args.train_config, "r"), Loader=yaml.FullLoader) configs = (preprocess_config, model_config, train_config) main(args, configs)