from PIL import Image import torch from torchvision import transforms # type: ignore from transformers import AutoModelForImageSegmentation from typing import Tuple import logging logger = logging.getLogger(__name__) class ImageSegmenter: def __init__(self, image_size: Tuple[int, int] = (1024, 1024)): self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') logger.info(f"Using device: {self.device}") try: self.birefnet = AutoModelForImageSegmentation.from_pretrained( "ZhengPeng7/BiRefNet", trust_remote_code=True ) self.birefnet.to(self.device) self.birefnet.eval() # Set model to evaluation mode except Exception as e: logger.error(f"Error loading model: {str(e)}") raise self.transform_image = transforms.Compose([ transforms.Resize(image_size), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ), ]) async def extract_object(self, image: Image.Image) -> Tuple[Image.Image, Image.Image]: try: # Transform image input_images = self.transform_image(image).unsqueeze(0).to(self.device) # Prediction with torch.no_grad(): preds = self.birefnet(input_images)[-1].sigmoid().cpu() pred = preds[0].squeeze() pred_pil = transforms.ToPILImage()(pred) mask = pred_pil.resize(image.size) image.putalpha(mask) return image, mask except Exception as e: logger.error(f"Error in extract_object: {str(e)}") raise async def segment(self, image: Image.Image) -> Tuple[Image.Image, Image.Image]: """Fixed typo in method name and added type hints""" return await self.extract_object(image)