import yfinance as yf from backtesting import Backtest import pandas as pd import os from multiprocessing import Pool from itertools import repeat from functools import partial from strategies import SMC_test, SMC_ema, SMCStructure from src.colorer import get_logger, start_end_log logger = get_logger() @start_end_log def fetch(symbol, period, interval): logger.info(f"Fetching {symbol} for interval {interval} and period {period}") df = yf.download(symbol, period=period, interval=interval, progress=False) df.columns =df.columns.get_level_values(0) return df @start_end_log def smc_backtest(data, filename, **kwargs): bt = Backtest(data, SMC_test, cash=kwargs['cash'], commission=kwargs['commission']) results = bt.run(swing_window=kwargs['swing_hl']) bt.plot(filename=filename, open_browser=False) return results @start_end_log def smc_ema_backtest(data, filename, **kwargs): bt = Backtest(data, SMC_ema, cash=kwargs['cash'], commission=kwargs['commission']) results = bt.run(swing_window=kwargs['swing_hl'], ema1=kwargs['ema1'], ema2=kwargs['ema2'], close_on_crossover=kwargs['close_on_crossover']) bt.plot(filename=filename, open_browser=False) return results @start_end_log def smc_structure_backtest(data, filename, **kwargs): bt = Backtest(data, SMCStructure, cash=kwargs['cash'], commission=kwargs['commission']) results = bt.run(swing_window=kwargs['swing_hl']) bt.plot(filename=filename, open_browser=False) return results @start_end_log def run_strategy(ticker_symbol, strategy, period, interval, **kwargs): default_kwargs = {'swing_hl': 10, 'ema1': 9, 'ema2':21, 'close_on_crossover': False, 'cash': 10000, 'commission': 0} kwargs = default_kwargs | kwargs logger.info(f'Running {strategy} for {ticker_symbol}') # Fetching ohlc of random ticker_symbol. retries = 3 for i in range(retries): try: data = fetch(ticker_symbol, period, interval) except: raise Exception(f"{ticker_symbol} data fetch failed") if len(data) == 0: if i < retries - 1: print(f"Attempt{i + 1}: {ticker_symbol} ohlc is empty") else: raise Exception(f"{ticker_symbol} ohlc is empty") else: break filename = f'{ticker_symbol}.html' if strategy == "Order Block": backtest_results = smc_backtest(data, filename, **kwargs) elif strategy == "Order Block with EMA": backtest_results = smc_ema_backtest(data, filename, **kwargs) elif strategy == "Structure trading": backtest_results = smc_structure_backtest(data, filename, **kwargs) else: raise Exception('Strategy not found') with open(filename, 'r', encoding='utf-8') as f: plot = f.read() os.remove(filename) # Converting pd.Series to pd.Dataframe backtest_results = backtest_results.to_frame().transpose() backtest_results['Stock'] = ticker_symbol backtest_results['plot'] = plot backtest_results['Sector'] = yf.Ticker(ticker_symbol).info.get('sectorKey') backtest_results['Return [%]'] = backtest_results['Return [%]'].apply(lambda x: round(x, 2)) # Reordering columns. cols = ['Stock', 'Sector', 'Start', 'End', 'Return [%]', 'Equity Final [$]', 'Buy & Hold Return [%]', '# Trades', 'Win Rate [%]', 'Best Trade [%]', 'Worst Trade [%]', 'Avg. Trade [%]', 'plot'] backtest_results = backtest_results[cols] backtest_results = backtest_results.rename(columns = {'Equity Final [$]': 'Equity Final [₹]'}) return backtest_results @start_end_log def complete_test(stock_list: str, strategy: str, period: str, interval: str, multiprocess: bool, **kwargs): stock_list_map = {'Nifty 50': 'data/ind_nifty50list.csv', 'Nifty Next 50': 'data/ind_niftynext50list.csv', 'Nifty 100': 'data/ind_nifty100list.csv', 'Nifty 200': 'data/ind_nifty200list.csv'} nifty_stocks = pd.read_csv(stock_list_map[stock_list]) nifty_stocks.columns = [x.upper() for x in nifty_stocks.columns] logger.info(f"stock list columns: {nifty_stocks.columns}") ticker_list = pd.read_csv("data/Ticker_List_NSE_India.csv") # Merging nifty50 and ticker_list dataframes to get 'YahooEquiv' column. nifty_stocks = nifty_stocks.merge(ticker_list, "inner", 'SYMBOL') if multiprocess: with Pool() as p: result = p.starmap(partial(run_strategy, **kwargs), zip(nifty_stocks['YahooEquiv'].values, repeat(strategy), repeat(period), repeat(interval))) else: result = [run_strategy(nifty_stocks['YahooEquiv'].values[i], strategy, period, interval, **kwargs) for i in range(len(nifty_stocks))] df = pd.concat(result) df['plot'] = df['plot'].astype(str) df = df.sort_values(by=['Return [%]'], ascending=False) return df.reset_index().drop(columns=['index']) def categorize_df(df: pd.DataFrame, col: str, sort_col: str | None = None): categorized = df.groupby(col, sort=False) mapping = {} for name, group in categorized: mapping[name] = group # print(f"{name} mean: ", group[sort_col].mean()) # print(sorted(mapping.values(), key = lambda item: item[sort_col].mean(), reverse=True)) if sort_col: mapping = dict([('all', df)]+sorted(mapping.items(), key = lambda item: item[1][sort_col].mean(), reverse=True)) for category, df in mapping.items(): mapping[category] = df.sort_values(by=[sort_col], ascending=False) # print(mapping) return mapping if __name__ == "__main__": # pass # random_testing("") # data = fetch('RELIANCE.NS', period='1y', interval='15m') # df = yf.download('RELIANCE.NS', period='1yr', interval='15m') # rt.to_excel('test/all_testing_2.xlsx', index=False) # # print(rt) data = pd.read_csv(r"C:\Users\Dinesh\Downloads\Documents\2025-01-26T12-37_export.csv") data = data[data['Select']] print(data) mapping = categorize_df(data, 'Sector', 'Return [%]') print(mapping)