import streamlit as st import pandas as pd import asyncio import io import contextlib import os from pathlib import Path from intelpreventativehealthcare import ( target_patients_outreach, find_patients, write_outreach_emails, get_configs, ) # Import the prompt templates from intelpreventativehealthcare import ( USER_PROXY_PROMPT, EPIDEMIOLOGIST_PROMPT, DOCTOR_CRITIC_PROMPT, OUTREACH_EMAIL_PROMPT_TEMPLATE, ) from openai import OpenAI import streamlit.components.v1 as components # Add this import for custom HTML # Streamlit app configuration st.set_page_config(page_title="Preventative Healthcare Outreach", layout="wide") # Title at the top of the app st.title("Cloud Native Agentic Workflows in Healthcare") st.markdown(""" Welcome to your preventative healthcare outreach agentic system, built using the open-source framework [AutoGen](https://github.com/microsoft/autogen). To improve patient health outcomes, healthcare providers are looking for ways to reach out to patients who may be eligible for preventative screenings. This system is designed to help you automate the process of identifying patients who meet specific screening criteria and generating personalized emails to encourage them to schedule their screenings. The user provides a very broad screening criteria, and then the system uses AI agents to generate patient-specific criteria, filter patients from a given database, and ultimately write outreach emails to suggest to patients that they schedule a screening. To get the agents working, you can use the sidebar on the left of the UI to: 1. Customize the prompts for the agents. They use natural language understanding to execute on a workflow. You can use the default ones to get started, and modify to your more specific needs. 2. Select default (synthetically generated) patient data, or upload your own CSV file. 3. Describe a medical screening task. 4. Click on "Generate Outreach Emails" to create draft emails to patients (.txt files with email drafts). """) # Function to read README.md file def read_readme(): readme_path = Path(__file__).parent / "README.md" if readme_path.exists(): with open(readme_path, 'r') as f: readme_content = f.read() # Remove metadata block (everything between the first pair of "---") if readme_content.startswith("---"): metadata_end = readme_content.find("---", 3) # Find the closing "---" if metadata_end != -1: readme_content = readme_content[metadata_end + 3:].strip() return readme_content else: return "README.md file not found in the project directory." # Function to embed SVG images directly into the markdown content def fix_svg_images_in_markdown(markdown_content): import re # Find SVG image tags in the markdown content svg_pattern = r']*src="([^"]*\.svg)"[^>]*>' def replace_with_embedded_svg(match): img_tag = match.group(0) src_match = re.search(r'src="([^"]*)"', img_tag) if not src_match: return img_tag src_path = src_match.group(1) width_match = re.search(r'width="([^"]*)"', img_tag) width = width_match.group(1) if width_match else "100%" # Construct full path to the image img_path = Path(__file__).parent / src_path if img_path.exists(): try: # Read SVG content directly with open(img_path, 'r') as f: svg_content = f.read() # Create a custom HTML component for the SVG with proper styling return f"""
{svg_content}
""" except Exception as e: return f"""
Error loading SVG image: {e}
""" else: return f"""
Image not found: {src_path}
""" # Replace all SVG image tags with embedded SVG content return re.sub(svg_pattern, replace_with_embedded_svg, markdown_content) # Create tabs tab1, tab2 = st.tabs(["Healthcare Outreach App", "README"]) # Initialize session state for prompts if not already present if 'user_proxy_prompt' not in st.session_state: st.session_state.user_proxy_prompt = USER_PROXY_PROMPT if 'epidemiologist_prompt' not in st.session_state: st.session_state.epidemiologist_prompt = EPIDEMIOLOGIST_PROMPT if 'doctor_critic_prompt' not in st.session_state: st.session_state.doctor_critic_prompt = DOCTOR_CRITIC_PROMPT if 'outreach_email_prompt' not in st.session_state: st.session_state.outreach_email_prompt = OUTREACH_EMAIL_PROMPT_TEMPLATE # Main Healthcare App Tab (Tab 1) with tab1: # --- Activity/log screen for agent communication --- st.markdown("### Activity Log") # Create a container with fixed height and scrollbar for logs log_container = st.container() with log_container: # Use an expander that's open by default to contain the log with st.expander("Real-time Log", expanded=True): log_placeholder = st.empty() # --- Move user inputs, instructions, and CSV column info to sidebar --- with st.sidebar: # Add a section for customizing prompts at the top of the sidebar st.markdown("### Customize Agent Prompts") st.caption("The agents use LLMs and natural language understanding (NLU) to organize the tasks they need to accomplish. You can modify the prompts for each agent below; these prompts are given to the agents so that they can work together to produce the final outreach emails for the preventative healthcare task at hand.") # User Proxy Prompt with st.expander("User Proxy Prompt"): user_prompt = st.text_area( "User Proxy Prompt", value=st.session_state.user_proxy_prompt, height=300, key="user_proxy_input", label_visibility="hidden", # Add these style properties to preserve whitespace formatting help="", placeholder="", disabled=False, # Use CSS to preserve whitespace formatting max_chars=None ) st.session_state.user_proxy_prompt = user_prompt # Epidemiologist Prompt with st.expander("Epidemiologist Prompt"): epi_prompt = st.text_area( "Epidemiologist Prompt", value=st.session_state.epidemiologist_prompt, height=300, key="epidemiologist_input", label_visibility="hidden", help="", placeholder="", disabled=False, max_chars=None ) st.session_state.epidemiologist_prompt = epi_prompt # Doctor Critic Prompt with st.expander("Doctor Critic Prompt"): doc_prompt = st.text_area( "Doctor Critic Prompt", value=st.session_state.doctor_critic_prompt, height=300, key="doctor_critic_input", label_visibility="hidden", help="", placeholder="", disabled=False, max_chars=None ) st.session_state.doctor_critic_prompt = doc_prompt # Outreach Email Prompt Template with st.expander("Email Template Prompt"): email_prompt = st.text_area( "Email Template Prompt", value=st.session_state.outreach_email_prompt, height=300, key="email_template_input", label_visibility="hidden", help="", placeholder="", disabled=False, max_chars=None ) st.session_state.outreach_email_prompt = email_prompt # Add custom CSS to preserve whitespace in text areas while ensuring content fits st.markdown(""" """, unsafe_allow_html=True) # Reset prompts button if st.button("Reset Prompts to Default"): st.session_state.user_proxy_prompt = USER_PROXY_PROMPT st.session_state.epidemiologist_prompt = EPIDEMIOLOGIST_PROMPT st.session_state.doctor_critic_prompt = DOCTOR_CRITIC_PROMPT st.session_state.outreach_email_prompt = OUTREACH_EMAIL_PROMPT_TEMPLATE st.rerun() st.markdown("---") # Now add the "Get started" section after the prompts st.header("Patient Data and Screening Task") st.caption("Required CSV columns: patient_id, First Name, Last Name, Email, Patient diagnosis summary, age, gender, condition") # Create a container for the default dataset option to control its appearance default_dataset_container = st.container() # Add the file upload option after the default dataset option uploaded_file = st.file_uploader("Upload your own CSV file with patient data", type=["csv"]) # If a file is uploaded, show a message and disable the default checkbox if uploaded_file is not None: # Visual indication that custom data is being used st.success("✅ Using your uploaded file") # Disable the default dataset option with clear visual feedback with default_dataset_container: st.markdown("""
Use default dataset (data/patients.csv)
Disabled because custom file is uploaded
""", unsafe_allow_html=True) # Set use_default to False when a file is uploaded use_default = False else: # No file uploaded, show normal checkbox with default_dataset_container: use_default = st.checkbox("Use default dataset (data/patients.csv)", value=True) st.markdown("For more information about medical screening tasks, you can visit the website below.") st.link_button("U.S. Preventive Services Task Force","https://www.uspreventiveservicestaskforce.org/uspstf/recommendation-topics/uspstf-a-and-b-recommendations") screening_task = st.text_input("Enter the medical screening task (e.g., 'Colonoscopy screening').", "Colonoscopy screening") # Add contact information section st.markdown("---") st.subheader("Healthcare Provider Contact Information") st.caption("This information will appear in the emails sent to patients") # Create three columns for contact info fields col1, col2, col3 = st.columns(3) with col1: provider_name = st.text_input("Provider Name", "Benjamin Consolvo") with col2: provider_email = st.text_input("Provider Email", "doctor@doctor.com") with col3: provider_phone = st.text_input("Provider Phone", "123-456-7890") # Validate input fields before enabling the button required_fields_empty = ( screening_task.strip() == "" or provider_name.strip() == "" or provider_email.strip() == "" or provider_phone.strip() == "" ) if required_fields_empty: st.warning("Please fill in all required fields before proceeding.") st.markdown("---") # Move the button to the sidebar - disabled if required fields are empty generate = st.button("Generate Outreach Emails", disabled=required_fields_empty) # Explicitly set environment variable to avoid TTY errors os.environ["PYTHONUNBUFFERED"] = "1" # Only run the generation logic if we're on the first tab if tab1._active and generate: # Since the button can only be clicked when all fields are filled, # we don't need additional validation here # Hugging Face secrets api_key = st.secrets["OPENAI_API_KEY"] base_url = st.secrets["OPENAI_BASE_URL"] # --- Initialize log --- log_messages = [] def log(msg): log_messages.append(msg) # Show all messages in the scrollable container with better contrast log_placeholder.markdown( f"""
{"
".join(log_messages)}
""", unsafe_allow_html=True ) # Capture stdout/stderr during the workflow stdout_buffer = io.StringIO() stderr_buffer = io.StringIO() with contextlib.redirect_stdout(stdout_buffer), contextlib.redirect_stderr(stderr_buffer): if not screening_task: st.error("Please enter a medical screening task.") elif not uploaded_file and not use_default: st.error("Please upload a CSV file or select the default dataset.") else: # Load patient data if uploaded_file: patients_file = uploaded_file else: # Use absolute path for default dataset patients_file = os.path.join(os.path.dirname(__file__), "data/patients.csv") try: patients_df = pd.read_csv(patients_file) except Exception as e: st.error(f"Error reading the CSV file: {e}") st.stop() # Validate required columns required_columns = [ 'patient_id', 'First Name', 'Last Name', 'Email', 'Patient diagnosis summary', 'age', 'gender', 'condition' ] if not all(col in patients_df.columns for col in required_columns): st.error(f"The uploaded CSV file is missing required columns: {required_columns}") st.stop() # Load configurations llama_filter_dict = {"model": ["meta-llama/Llama-3.3-70B-Instruct"]} deepseek_filter_dict = {"model": ["deepseek-ai/DeepSeek-R1-Distill-Llama-70B"]} config_list_llama = get_configs("OAI_CONFIG_LIST.json", llama_filter_dict) config_list_deepseek = get_configs("OAI_CONFIG_LIST.json", deepseek_filter_dict) # Ensure the API key from secrets is used for config in config_list_llama: config["api_key"] = api_key for config in config_list_deepseek: config["api_key"] = api_key # --- Log agent communication --- log("🟢 Starting agent workflow...") log("🧑‍⚕️ Screening task: " + screening_task) log("📄 Loaded patient data: {} records".format(len(patients_df))) # Generate criteria for outreach - Pass the custom prompts log("🤖 Agent (Llama): Generating outreach criteria...") criteria = asyncio.run(target_patients_outreach( screening_task, config_list_llama, config_list_deepseek, log_fn=log if "log_fn" in target_patients_outreach.__code__.co_varnames else None, user_proxy_prompt=st.session_state.user_proxy_prompt, epidemiologist_prompt=st.session_state.epidemiologist_prompt, doctor_critic_prompt=st.session_state.doctor_critic_prompt )) log("✅ Criteria generated.") # Find patients matching criteria log("🤖 Agent (Llama): Filtering patients based on criteria...") filtered_patients, arguments_criteria = asyncio.run(find_patients( criteria, config_list_llama, log_fn=log if "log_fn" in find_patients.__code__.co_varnames else None, patients_file_path=patients_file # Use correct parameter name: patients_file_path )) log("✅ Patients filtered.") if filtered_patients.empty: log("⚠️ No patients matched the criteria.") st.warning("No patients matched the criteria.") else: # Initialize OpenAI client openai_client = OpenAI(api_key=api_key, base_url=base_url) # Generate outreach emails - Pass the custom email template log("🤖 Agent (Llama): Generating outreach emails...") asyncio.run(write_outreach_emails( filtered_patients, screening_task, arguments_criteria, openai_client, config_list_llama[0]['model'], phone=provider_phone, # Pass the provider's phone from form email=provider_email, # Pass the provider's email from form name=provider_name, # Pass the provider's name from form log_fn=log if "log_fn" in write_outreach_emails.__code__.co_varnames else None, outreach_email_prompt_template=st.session_state.outreach_email_prompt )) # Make sure data directory exists (for Hugging Face Spaces) data_dir = os.path.join(os.path.dirname(__file__), "data") os.makedirs(data_dir, exist_ok=True) # Generate expected email filenames based on filtered patients expected_email_files = [] for _, patient in filtered_patients.iterrows(): # Construct the expected filename based on patient data firstname = patient['First Name'] lastname = patient['Last Name'] filename = f"{firstname}_{lastname}_email.txt" if os.path.exists(os.path.join(data_dir, filename)): expected_email_files.append(filename) # Use only the email files for patients in the filtered DataFrame email_files = expected_email_files if email_files: log("✅ Outreach emails generated successfully: {} emails created".format(len(email_files))) st.success(f"{len(email_files)} outreach emails have been generated!") # Create a section for downloads st.markdown("### Download Generated Emails") # Store email content in session state to persist across interactions if 'email_contents' not in st.session_state: st.session_state.email_contents = {} for email_file in email_files: with open(os.path.join(data_dir, email_file), 'r') as f: st.session_state.email_contents[email_file] = f.read() # Create ZIP file only once and store in session state if 'zip_buffer' not in st.session_state: import zipfile zip_buffer = io.BytesIO() with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file: for email_file, content in st.session_state.email_contents.items(): zip_file.writestr(email_file, content) st.session_state.zip_buffer = zip_buffer.getvalue() # Create base64 encoding of zip file import base64 b64_zip = base64.b64encode(st.session_state.zip_buffer).decode() # Create HTML for ZIP download - Use components.html instead of st.markdown zip_html = f"""
📦 Download All Emails as ZIP
""" # Use components.html instead of st.markdown for ZIP download components.html(zip_html, height=70) st.markdown("---") st.markdown("#### Individual Email Downloads") # Generate HTML for individual email downloads individual_html = """
""" # Generate download links for all emails for i, email_file in enumerate(email_files): file_content = st.session_state.email_contents.get(email_file, "") # Create a base64 encoded version of the file content b64_content = base64.b64encode(file_content.encode()).decode() # Extract a more complete display name (First + Last name) name_parts = email_file.split('_')[:2] # Get first and last name parts display_name = " ".join(name_parts) # Join with space to create "First Last" # Add download link to HTML individual_html += f""" {display_name} """ individual_html += """
""" # Use components.html for individual downloads - estimate height based on number of emails # Increase height calculation to account for potentially longer names components.html(individual_html, height=100 + (len(email_files) // 4) * 60) else: log("⚠️ Email generation process completed but no email files were found.") st.warning("The email generation process completed but no email files were found in the data directory. This might indicate an issue with the email generation or file saving process.") # After workflow, append captured output std_output = stdout_buffer.getvalue() std_error = stderr_buffer.getvalue() if std_output: log_messages.append("Terminal Output:") for line in std_output.splitlines(): if line.strip(): # Skip empty lines log_messages.append(line) # Update the log display with all messages using better contrast log_placeholder.markdown( f"""
{"
".join(log_messages)}
""", unsafe_allow_html=True ) if std_error: log_messages.append("Terminal Error:") for line in std_error.splitlines(): if line.strip(): # Skip empty lines log_messages.append(f"{line}") # Update the log display with all messages log_placeholder.markdown( f"""
{"
".join(log_messages)}
""", unsafe_allow_html=True ) # README Tab (Tab 2) with tab2: readme_content = read_readme() # Process the README content to properly handle SVG images readme_with_embedded_svgs = fix_svg_images_in_markdown(readme_content) # Use unsafe_allow_html=True to render HTML content properly st.markdown(readme_with_embedded_svgs, unsafe_allow_html=True) # Add CSS to ensure SVGs are responsive and display properly st.markdown(""" """, unsafe_allow_html=True)