DEPLOY_TEXT = f""" # ๐Ÿš€ Deployment Tips A collection of powerful models is valuable, but ultimately, you need to be able to use them effectively. This tab is dedicated to providing guidance and code snippets for performing inference with leaderboard models on Intel platforms. Below, you'll find a table of open-source software options for inference, along with the supported Intel Hardware Platforms. A ๐Ÿš€ indicates that inference with the associated software package is supported on the hardware. We hope this information helps you choose the best option for your specific use case. Happy building!
Inference Software Gaudi Xeon GPU Max Arc GPU Core Ultra
Optimum Habana ๐Ÿš€
Intel Extension for PyTorch ๐Ÿš€ ๐Ÿš€ ๐Ÿš€
Intel Extension for Transformers ๐Ÿš€ ๐Ÿš€ ๐Ÿš€
OpenVINO ๐Ÿš€ ๐Ÿš€ ๐Ÿš€ ๐Ÿš€
BigDL ๐Ÿš€ ๐Ÿš€ ๐Ÿš€ ๐Ÿš€
NPU Acceleration Library ๐Ÿš€
PyTorch ๐Ÿš€ ๐Ÿš€ ๐Ÿš€ ๐Ÿš€ ๐Ÿš€
Tensorflow ๐Ÿš€ ๐Ÿš€ ๐Ÿš€ ๐Ÿš€ ๐Ÿš€

# Intelยฎ Gaudi Accelerators Habana's SDK, Intel Gaudi Software, supports PyTorch and DeepSpeed for accelerating LLM training and inference. The Intel Gaudi Software graph compiler will optimize the execution of the operations accumulated in the graph (e.g. operator fusion, data layout management, parallelization, pipelining and memory management, and graph-level optimizations). Optimum Habana provides covenient functionality for various tasks, below you'll find the command line snippet that you would run to perform inference on Gaudi with meta-llama/Llama-2-7b-hf. The "run_generation.py" script below can be found [here](https://github.com/huggingface/optimum-habana/tree/main/examples/text-generation) ```bash python run_generation.py \ --model_name_or_path meta-llama/Llama-2-7b-hf \ --use_hpu_graphs \ --use_kv_cache \ --max_new_tokens 100 \ --do_sample \ --batch_size 2 \ --prompt "Hello world" "How are you?" ```
# Intelยฎ Max Series GPU ### INT4 Inference (GPU) ```python import intel_extension_for_pytorch as ipex from intel_extension_for_transformers.transformers.modeling import AutoModelForCausalLM from transformers import AutoTokenizer device_map = "xpu" model_name ="Qwen/Qwen-7B" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) prompt = "When winter becomes spring, the flowers..." inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(device_map) model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, device_map=device_map, load_in_4bit=True) model = ipex.optimize_transformers(model, inplace=True, dtype=torch.float16, woq=True, device=device_map) output = model.generate(inputs) ```
# Intelยฎ Xeon CPUs ### Intel Extension for PyTorch - Optimum Intel (no quantization) Requires installing/updating optimum `pip install --upgrade-strategy eager optimum[ipex] ` ```python from optimum.intel import IPEXModelForCausalLM from transformers import AutoTokenizer, pipeline model = IPEXModelForCausalLM.from_pretrained(model_id) tokenizer = AutoTokenizer.from_pretrained(model_id) pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) results = pipe("A fisherman at sea...") ``` ### Intelยฎ Extension for PyTorch - Mixed Precision (fp32 and bf16) ```python import torch import intel_extension_for_pytorch as ipex import transformers model= transformers.AutoModelForCausalLM(model_name_or_path).eval() dtype = torch.float # or torch.bfloat16 model = ipex.llm.optimize(model, dtype=dtype) # generation inference loop with torch.inference_mode(): model.generate() ``` ### Intelยฎ Extension for Transformers - INT4 Inference (CPU) ```python from transformers import AutoTokenizer from intel_extension_for_transformers.transformers import AutoModelForCausalLM model_name = "Intel/neural-chat-7b-v3-1" prompt = "When winter becomes spring, the flowers..." tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) inputs = tokenizer(prompt, return_tensors="pt").input_ids model = AutoModelForCausalLM.from_pretrained(model_name, load_in_4bit=True) outputs = model.generate(inputs) ```
# Intelยฎ Core Ultra (NPUs and iGPUs) ### Intelยฎ NPU Acceleration Library ```python from transformers import AutoTokenizer, TextStreamer, AutoModelForCausalLM import intel_npu_acceleration_library import torch model_id = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" model = AutoModelForCausalLM.from_pretrained(model_id, use_cache=True).eval() tokenizer = AutoTokenizer.from_pretrained(model_id, use_default_system_prompt=True) tokenizer.pad_token_id = tokenizer.eos_token_id streamer = TextStreamer(tokenizer, skip_special_tokens=True) print("Compile model for the NPU") model = intel_npu_acceleration_library.compile(model, dtype=torch.int8) query = input("Ask something: ") prefix = tokenizer(query, return_tensors="pt")["input_ids"] generation_kwargs = dict( input_ids=prefix, streamer=streamer, do_sample=True, top_k=50, top_p=0.9, max_new_tokens=512, ) print("Run inference") _ = model.generate(**generation_kwargs) ``` ### OpenVINO Toolking with Optimum Habana ```python from optimum.intel import OVModelForCausalLM from transformers import AutoTokenizer, pipeline model_id = "helenai/gpt2-ov" model = OVModelForCausalLM.from_pretrained(model_id) tokenizer = AutoTokenizer.from_pretrained(model_id) pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) pipe("In the spring, beautiful flowers bloom...") ```
# Intel ARC GPUs Coming Soon! """