import torch import numpy as np from PIL import Image from controlnet_aux import OpenposeDetector from model_util import get_torch_device import cv2 from transformers import DPTImageProcessor, DPTForDepthEstimation device = get_torch_device() depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to(device) feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas") openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet") def get_depth_map(image): image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda") with torch.no_grad(), torch.autocast("cuda"): depth_map = depth_estimator(image).predicted_depth depth_map = torch.nn.functional.interpolate( depth_map.unsqueeze(1), size=(1024, 1024), mode="bicubic", align_corners=False, ) depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True) depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True) depth_map = (depth_map - depth_min) / (depth_max - depth_min) image = torch.cat([depth_map] * 3, dim=1) image = image.permute(0, 2, 3, 1).cpu().numpy()[0] image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8)) return image def get_canny_image(image, t1=100, t2=200): image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) edges = cv2.Canny(image, t1, t2) return Image.fromarray(edges, "L")