from sentence_transformers import SentenceTransformer import pinecone import openai import streamlit as st import os from dotenv import load_dotenv # Load environment variables from .env file load_dotenv("/home/oem/Desktop/TRUEINFO LABS/Quotes_chat/.env") logo_image = "https://i.ibb.co/vHJZL0y/insightly.png" st.image(logo_image, width=200) # Access OpenAI and Pinecone API keys from environment variables OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") PINECONE_API_KEY = os.getenv("PINECONE_API_KEY") openai.api_key = OPENAI_API_KEY model = SentenceTransformer('all-MiniLM-L6-v2') pinecone.init(api_key = PINECONE_API_KEY, environment='asia-southeast1-gcp-free') index = pinecone.Index('langchain-chatbot') def find_match(input): input_em = model.encode(input).tolist() result = index.query(input_em, top_k=2, includeMetadata=True) return result['matches'][0]['metadata']['text']+"\n"+result['matches'][1]['metadata']['text'] def query_refiner(conversation, query): response = openai.Completion.create( model="text-davinci-003", prompt=f"Given the following user query and conversation log, formulate a question that would be the most relevant to provide the user with an answer from a knowledge base.\n\nCONVERSATION LOG: \n{conversation}\n\nQuery: {query}\n\nRefined Query:", temperature=0.7, max_tokens=256, top_p=1, frequency_penalty=0, presence_penalty=0 ) return response['choices'][0]['text'] def get_conversation_string(): conversation_string = "" for i in range(len(st.session_state['responses'])-1): conversation_string += "Human: "+st.session_state['requests'][i] + "\n" conversation_string += "Bot: "+ st.session_state['responses'][i+1] + "\n" return conversation_string