import gradio as gr import numpy as np from pathlib import Path from matplotlib import pyplot as plt import torch import tempfile import os from sam_segment import predict_masks_with_sam from lama_inpaint import inpaint_img_with_lama from utils import load_img_to_array, save_array_to_img, dilate_mask, \ show_mask, show_points def mkstemp(suffix, dir=None): fd, path = tempfile.mkstemp(suffix=f"{suffix}", dir=dir) os.close(fd) return Path(path) def get_masked_img(img, point_coords): point_labels = [1] dilate_kernel_size = 15 device = "cuda" if torch.cuda.is_available() else "cpu" masks, _, _ = predict_masks_with_sam( img, [point_coords], point_labels, model_type="vit_h", ckpt_p="pretrained_models/sam_vit_h_4b8939.pth", device=device, ) masks = masks.astype(np.uint8) * 255 # dilate mask to avoid unmasked edge effect if dilate_kernel_size is not None: masks = [dilate_mask(mask, dilate_kernel_size) for mask in masks] figs = [] for idx, mask in enumerate(masks): # save the pointed and masked image tmp_p = mkstemp(".png") dpi = plt.rcParams['figure.dpi'] height, width = img.shape[:2] fig = plt.figure(figsize=(width/dpi/0.77, height/dpi/0.77)) plt.imshow(img) plt.axis('off') # show_points(plt.gca(), [point_coords], point_labels, # size=(width*0.04)**2) # plt.savefig(tmp_p, bbox_inches='tight', pad_inches=0) show_mask(plt.gca(), mask, random_color=False) plt.savefig(tmp_p, bbox_inches='tight', pad_inches=0) figs.append(fig) plt.close() return figs with gr.Blocks() as demo: with gr.Row(): img = gr.Image(label="Image") with gr.Row(label="Image with Segmentation Mask"): img_with_mask_0 = gr.Plot() img_with_mask_1 = gr.Plot() img_with_mask_2 = gr.Plot() with gr.Row(): w = gr.Number() h = gr.Number() predict_mask = gr.Button("Predict Mask Using SAM") def get_select_coords(evt: gr.SelectData): return evt.index[0], evt.index[1] img.select(get_select_coords, [], [w, h]) predict_mask.click( get_masked_img, [img, [w, h]], [img_with_mask_0, img_with_mask_1, img_with_mask_2] ) if __name__ == "__main__": demo.launch()