import gradio as gr import numpy as np with gr.Blocks() as demo: tolerance = gr.Slider(label="Tolerance", info="How different colors can be in a segment.", minimum=0, maximum=256 * 3, value=50) with gr.Row(): input_img = gr.Image(label="Input") output_img = gr.Image(label="Selected Segment") def get_select_coords(img, tolerance, evt: gr.SelectData): visited_pixels = set() pixels_in_queue = set() pixels_in_segment = set() start_pixel = img[evt.index[1], evt.index[0]] pixels_in_queue.add((evt.index[1], evt.index[0])) while len(pixels_in_queue) > 0: pixel = pixels_in_queue.pop() visited_pixels.add(pixel) neighbors = [] if pixel[0] > 0: neighbors.append((pixel[0] - 1, pixel[1])) if pixel[0] < img.shape[0] - 1: neighbors.append((pixel[0] + 1, pixel[1])) if pixel[1] > 0: neighbors.append((pixel[0], pixel[1] - 1)) if pixel[1] < img.shape[1] - 1: neighbors.append((pixel[0], pixel[1] + 1)) for neighbor in neighbors: if neighbor in visited_pixels: continue neighbor_pixel = img[neighbor[0], neighbor[1]] if np.abs(neighbor_pixel - start_pixel).sum() < tolerance: pixels_in_queue.add(neighbor) pixels_in_segment.add(neighbor) out = img.copy() * 0.2 out = out.astype(np.uint8) for pixel in pixels_in_segment: out[pixel[0], pixel[1]] = img[pixel[0], pixel[1]] return out input_img.select(get_select_coords, [input_img, tolerance], output_img) if __name__ == "__main__": demo.launch()