import gradio as gr import os import uuid from chat_3 import Chat # Function to initialize a new session and create chatbot instance for that session def initialize_session(): session_id = str(uuid.uuid4())[:8] # Generate unique session ID chatbot = Chat() # Create a new Chat instance for this session # chatbot = Chat("gemini-2.0-flash") history = [] # Initialize history for this session return "", session_id, chatbot, history # "" for clearing input # Function to handle user input and chatbot response def chat_function(prompt, history, session_id, chatbot): if chatbot is None: return history, "", session_id, chatbot # Skip if chatbot not ready # Append the user's input to the message history history.append({"role": "user", "content": prompt}) # Get the response from the chatbot response = chatbot.chat(prompt) # Append the assistant's response to the message history history.append({"role": "assistant", "content": response}) return history, "", session_id, chatbot # Clear input # Function to save feedback with chat history def send_feedback(feedback, history, session_id, chatbot): os.makedirs("app/feedback", exist_ok=True) # Create folder if not exists filename = f"app/feedback/feedback_{session_id}.txt" with open(filename, "a", encoding="utf-8") as f: f.write("=== Feedback Received ===\n") f.write(f"Session ID: {session_id}\n") f.write(f"Feedback: {feedback}\n") f.write("Chat History:\n") for msg in history: f.write(f"{msg['role']}: {msg['content']}\n") f.write("\n--------------------------\n\n") return "" # Clear feedback input # Create the Gradio interface with gr.Blocks(theme=gr.themes.Soft(primary_hue="pink")) as demo: gr.Markdown("# Hey Beauty Chatbot 🧖🏻‍♀️✨🌿") gr.Markdown("สวัสดีค่ะ Hey Beauty ยินดีให้บริการค่ะ") # Initialize State session_state = gr.State() chatbot_instance = gr.State() chatbot_history = gr.State([]) # Chat UI chatbot_interface = gr.Chatbot(type="messages", label="Chat History") user_input = gr.Textbox(placeholder="Type your message here...", elem_id="user_input", lines=1) submit_button = gr.Button("Send") clear_button = gr.Button("Delete Chat History") # Submit actions submit_button.click( fn=chat_function, inputs=[user_input, chatbot_history, session_state, chatbot_instance], outputs=[chatbot_interface, user_input, session_state, chatbot_instance] ) user_input.submit( fn=chat_function, inputs=[user_input, chatbot_history, session_state, chatbot_instance], outputs=[chatbot_interface, user_input, session_state, chatbot_instance] ) # # Clear history # clear_button.click(lambda: [], outputs=chatbot_interface) clear_button.click( fn=initialize_session, inputs=[], outputs=[user_input, session_state, chatbot_instance, chatbot_history] ).then( fn=lambda: gr.update(value=[]), inputs=[], outputs=chatbot_interface ) # Feedback section with gr.Row(): feedback_input = gr.Textbox(placeholder="Send us feedback...", label="💬 Feedback") send_feedback_button = gr.Button("Send Feedback") send_feedback_button.click( fn=send_feedback, inputs=[feedback_input, chatbot_history, session_state, chatbot_instance], outputs=[feedback_input] ) # Initialize session on load demo.load( fn=initialize_session, inputs=[], outputs=[user_input, session_state, chatbot_instance, chatbot_history] ) if __name__ == "__main__": # Launch demo.launch(share=True) # demo.launch() # import gradio as gr # from huggingface_hub import InferenceClient # """ # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference # """ # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # def respond( # message, # history: list[tuple[str, str]], # system_message, # max_tokens, # temperature, # top_p, # ): # messages = [{"role": "system", "content": system_message}] # for val in history: # if val[0]: # messages.append({"role": "user", "content": val[0]}) # if val[1]: # messages.append({"role": "assistant", "content": val[1]}) # messages.append({"role": "user", "content": message}) # response = "" # for message in client.chat_completion( # messages, # max_tokens=max_tokens, # stream=True, # temperature=temperature, # top_p=top_p, # ): # token = message.choices[0].delta.content # response += token # yield response # """ # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface # """ # demo = gr.ChatInterface( # respond, # additional_inputs=[ # gr.Textbox(value="You are a friendly Chatbot.", label="System message"), # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # gr.Slider( # minimum=0.1, # maximum=1.0, # value=0.95, # step=0.05, # label="Top-p (nucleus sampling)", # ), # ], # ) # if __name__ == "__main__": # demo.launch()