Spaces:
Runtime error
Runtime error
from apscheduler.schedulers.background import BackgroundScheduler | |
from model_types import MODEL_TYPES, ModelType | |
from huggingface_hub import HfApi | |
import matplotlib.pyplot as plt | |
import bar_chart_race as bcr | |
import pandas as pd | |
import gradio as gr | |
import os | |
def restart_space(): | |
HfApi(token=os.environ.get("HF_TOKEN", None)).restart_space( | |
repo_id="IlyasMoutawwakil/llm-bar-race", | |
token=os.environ.get("HF_TOKEN", None), | |
) | |
scheduler = BackgroundScheduler() | |
scheduler.add_job( | |
func=restart_space, | |
trigger="interval", | |
seconds=60 * 60 * 6, | |
) | |
open_llm_race_dataset = pd.read_parquet( | |
"https://huggingface.co/datasets/IlyasMoutawwakil/llm-race-dataset/resolve/main/llm-race-dataset.parquet", | |
engine="pyarrow", | |
) | |
# resample for ever model to a daily frequency | |
open_llm_race_dataset = ( | |
open_llm_race_dataset.set_index("date", drop=True) | |
.groupby("model", as_index=False) | |
.resample("D", how="last", closed="right", fill_method="ffill") | |
.last() | |
.reset_index(drop=False) | |
) | |
# filter | |
open_llm_race_dataset["date"] = open_llm_race_dataset["date"].dt.strftime("%Y-%m-%d") | |
# open_llm_race_dataset = open_llm_race_dataset[ | |
# open_llm_race_dataset["date"] >= "2023-07-10" | |
# ] | |
open_llm_race_dataset = open_llm_race_dataset[["date", "score", "model"]] | |
# drop nan values | |
open_llm_race_dataset.dropna(inplace=True) | |
# drop duplicates on model and date | |
open_llm_race_dataset.drop_duplicates(subset=["model", "date"], inplace=True) | |
# add the model type | |
open_llm_race_dataset["type"] = open_llm_race_dataset["model"].apply( | |
lambda x: MODEL_TYPES[x].name if x in MODEL_TYPES else ModelType.Unknown.name | |
) | |
def get_bar_chart(model_type: str, top_n: int = 10, title: str = ""): | |
fig, ax = plt.subplots(figsize=(12, 6)) | |
ax.set_xlim(0, 100) | |
plt.subplots_adjust(left=0.30, right=0.98) | |
subset = open_llm_race_dataset[open_llm_race_dataset["type"] == model_type] | |
subset = subset.pivot(index="date", columns="model", values="score") | |
# subset.fillna(0, inplace=True) | |
fig = bcr.bar_chart_race( | |
subset, | |
fig=fig, | |
title=title, | |
n_bars=top_n, | |
fixed_max=True, | |
bar_label_font=10, | |
tick_label_font=10, | |
period_length=1000, | |
steps_per_period=20, | |
end_period_pause=100, | |
filter_column_colors=True, | |
bar_texttemplate="{x:.2f}%", | |
bar_kwargs={"alpha": 0.5, "ec": "black", "lw": 2}, | |
) | |
return gr.HTML(fig) | |
# Demo interface | |
demo = gr.Blocks() | |
with demo: | |
# leaderboard title | |
gr.HTML("<center><h1>LLM Bar Race ππββοΈ</h1></center>") | |
with gr.Tabs(): | |
with gr.TabItem(label="Pretrained Models"): | |
get_bar_chart(ModelType.PT.name, title="Pretrained Models") | |
with gr.TabItem(label="Instructions Finetuned Models"): | |
get_bar_chart(ModelType.IFT.name, title="Instructions Finetuned Models") | |
with gr.TabItem(label="RLHF Models"): | |
get_bar_chart(ModelType.RL.name, title="RLHF Models") | |
with gr.TabItem(label="Finetuned Models"): | |
get_bar_chart(ModelType.FT.name, title="Finetuned Models") | |
scheduler.start() | |
demo.queue(concurrency_count=10).launch() | |