#include "ggml.h" #include "otherarch.h" #include "utils.h" #include #include #include #include #include #include #include #include #include #include #include "model_adapter.h" #ifdef GGML_USE_CUBLAS #include "ggml-cuda.h" #endif #if defined(GGML_USE_CLBLAST) #include "ggml-opencl.h" #endif // load the model's weights from a file bool mpt_model_load(const std::string & fname, mpt_model & model, gpt_vocab & vocab, int gpulayers) { printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str()); auto fin = std::ifstream(fname, std::ios::binary); if (!fin) { fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str()); return false; } // verify magic { uint32_t magic; fin.read((char *)&magic, sizeof(magic)); if (magic != 0x67676d6c) { fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str()); return false; } } // load hparams { auto & hparams = model.hparams; fin.read((char *) &hparams.d_model, sizeof(hparams.d_model)); fin.read((char *) &hparams.max_seq_len, sizeof(hparams.max_seq_len)); fin.read((char *) &hparams.n_heads, sizeof(hparams.n_heads)); fin.read((char *) &hparams.n_layers, sizeof(hparams.n_layers)); fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab)); fin.read((char *) &hparams.alibi_bias_max, sizeof(hparams.alibi_bias_max)); fin.read((char *) &hparams.clip_qkv, sizeof(hparams.clip_qkv)); fin.read((char *) &hparams.ftype, sizeof(hparams.ftype)); hparams.n_ctx = std::min(hparams.max_seq_len, hparams.n_ctx); const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR; printf("%s: d_model = %d\n", __func__, hparams.d_model); printf("%s: max_seq_len = %d\n", __func__, hparams.max_seq_len); printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx); printf("%s: n_heads = %d\n", __func__, hparams.n_heads); printf("%s: n_layers = %d\n", __func__, hparams.n_layers); printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab); printf("%s: alibi_bias_max = %f\n", __func__, hparams.alibi_bias_max); printf("%s: clip_qkv = %f\n", __func__, hparams.clip_qkv); printf("%s: ftype = %d\n", __func__, hparams.ftype); printf("%s: qntvr = %d\n", __func__, qntvr); hparams.ftype %= GGML_QNT_VERSION_FACTOR; } // load vocab { const int32_t n_vocab = model.hparams.n_vocab; std::string word; std::vector buf(128); for (int i = 0; i < n_vocab; i++) { uint32_t len; fin.read((char *) &len, sizeof(len)); buf.resize(len); fin.read((char *) buf.data(), len); word.assign(buf.data(), len); // Convert token from utf-8 // std::wstring word_multibytes = convert_to_wstring(word); // if(word_multibytes!=L"") // { // word.resize(word_multibytes.size()); // for (int w = 0; w < word_multibytes.size(); w++) { // word[w] = uint8_t(word_multibytes[w]); // } // } vocab.token_to_id[word] = i; vocab.id_to_token[i] = word; } } // for the big tensors, we have the option to store the data in 16-bit // floats or quantized in order to save memory and also to speed up the // computation ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype)(model.hparams.ftype)); if (wtype == GGML_TYPE_COUNT) { fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n", __func__, fname.c_str(), model.hparams.ftype); return false; } auto & ctx = model.ctx; size_t ctx_size = 0; const auto & hparams = model.hparams; const size_t n_ctx = hparams.n_ctx; { const size_t n_embd = hparams.d_model; const size_t n_layer = hparams.n_layers; const size_t n_vocab = hparams.n_vocab; ctx_size += n_embd * n_vocab * ggml_type_sizef(wtype); // wte_weight ctx_size += n_embd * ggml_type_sizef(GGML_TYPE_F32); // norm_f_weight ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // ln_1_weight ctx_size += n_layer * (3 * n_embd * n_embd * ggml_type_sizef(wtype)); // attn_Wqkv_weight ctx_size += n_layer * (n_embd * n_embd * ggml_type_sizef(wtype)); // attn_out_proj_weight ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // ln_2_weight ctx_size += n_layer * (4 * n_embd * n_embd * ggml_type_sizef(wtype)); // mlp_mlp_up_weight ctx_size += n_layer * (n_embd * n_embd * 4 * ggml_type_sizef(wtype)); // mlp_mlp_down_weight ctx_size += n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F16); // memory_k ctx_size += n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F16); // memory_v ctx_size += (6 + 6 * n_layer) * 512; // object overhead printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size / (1024.0 * 1024.0)); } // create the ggml context { struct ggml_init_params params; params.mem_size = ctx_size; params.mem_buffer = NULL; params.no_alloc = false; model.ctx = ggml_init(params); if (!model.ctx) { fprintf(stderr, "%s: ggml_init() failed\n", __func__); return false; } } // prepare memory for the weights { const auto & hparams = model.hparams; const size_t n_embd = hparams.d_model; const size_t n_layer = hparams.n_layers; const size_t n_vocab = hparams.n_vocab; model.layers.resize(n_layer); model.wte_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); model.norm_f_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // map by name model.tensors["transformer.wte.weight"] = model.wte_weight; model.tensors["transformer.norm_f.weight"] = model.norm_f_weight; for (int i = 0; i < (int) n_layer; ++i) { auto & layer = model.layers[i]; layer.norm_1_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.c_attn_wqkv_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, 3 * n_embd); layer.c_attn_out_proj_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); layer.norm_2_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.ffn_up_proj = ggml_new_tensor_2d(ctx, wtype, n_embd, 4 * n_embd); layer.ffn_down_proj = ggml_new_tensor_2d(ctx, wtype, 4 * n_embd, n_embd); // map by name model.tensors["transformer.blocks." + std::to_string(i) + ".norm_1.weight"] = layer.norm_1_weight; model.tensors["transformer.blocks." + std::to_string(i) + ".attn.Wqkv.weight"] = layer.c_attn_wqkv_weight; model.tensors["transformer.blocks." + std::to_string(i) + ".attn.out_proj.weight"] = layer.c_attn_out_proj_weight; model.tensors["transformer.blocks." + std::to_string(i) + ".norm_2.weight"] = layer.norm_2_weight; model.tensors["transformer.blocks." + std::to_string(i) + ".ffn.up_proj.weight"] = layer.ffn_up_proj; model.tensors["transformer.blocks." + std::to_string(i) + ".ffn.down_proj.weight"] = layer.ffn_down_proj; } } // key + value memory { const auto & hparams = model.hparams; const size_t n_embd = hparams.d_model; const size_t n_layer = hparams.n_layers; const int64_t n_mem = n_layer * n_ctx; const int64_t n_elements = n_embd * n_mem; model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v); printf("%s: memory_size = %8.2f MB, n_mem = %" PRId64 "\n", __func__, memory_size / 1024.0 / 1024.0, n_mem); } // load weights { int n_tensors = 0; size_t total_size = 0; printf("%s: ", __func__); while (true) { int32_t n_dims; int32_t length; int32_t ttype; fin.read(reinterpret_cast(&n_dims), sizeof(n_dims)); fin.read(reinterpret_cast(&length), sizeof(length)); fin.read(reinterpret_cast(&ttype), sizeof(ttype)); if (fin.eof()) { break; } int32_t nelements = 1; int32_t ne[2] = {1, 1}; for (int i = 0; i < n_dims; ++i) { fin.read(reinterpret_cast(&ne[i]), sizeof(ne[i])); nelements *= ne[i]; } std::string name(length, 0); fin.read(&name[0], length); if (model.tensors.find(name.data()) == model.tensors.end()) { fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data()); return false; } auto tensor = model.tensors[name.data()]; if (ggml_nelements(tensor) != nelements) { fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data()); return false; } if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) { fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%5d, " "%5d], expected [%5d, %5d]\n", __func__, name.data(), (int)tensor->ne[0], (int)tensor->ne[1], ne[0], ne[1]); return false; } // for debugging if (0) { printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor) / 1024.0 / 1024.0, ggml_nbytes(tensor)); } const size_t bpe = ggml_type_size(ggml_type(ttype)); if ((nelements * bpe) / ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) { fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, " "expected %zu\n", __func__, name.data(), ggml_nbytes(tensor), nelements * bpe); return false; } fin.read(reinterpret_cast(tensor->data), ggml_nbytes(tensor)); total_size += ggml_nbytes(tensor); if (++n_tensors % 8 == 0) { printf("."); fflush(stdout); } } printf(" done\n"); printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size / 1024.0 / 1024.0, n_tensors); } fin.close(); //gpu offload #if defined(GGML_USE_CLBLAST) || defined(GGML_USE_CUBLAS) if(gpulayers>0) { const auto & hparams = model.hparams; size_t vram_total = 0; const int n_gpu = std::min(gpulayers, int(hparams.n_layers)); fprintf(stderr, "%s: [GPU] offloading %d layers to GPU\n", __func__, n_gpu); for (int i = 0; i < n_gpu; ++i) { const auto & layer = model.layers[i]; layer.ffn_up_proj->backend = GGML_BACKEND_GPU; layer.ffn_down_proj->backend = GGML_BACKEND_GPU; layer.c_attn_wqkv_weight->backend = GGML_BACKEND_GPU; layer.c_attn_out_proj_weight->backend = GGML_BACKEND_GPU; #if defined(GGML_USE_CLBLAST) ggml_cl_transform_tensor(layer.ffn_up_proj->data,layer.ffn_up_proj); vram_total += ggml_nbytes(layer.ffn_up_proj); ggml_cl_transform_tensor(layer.ffn_down_proj->data,layer.ffn_down_proj); vram_total += ggml_nbytes(layer.ffn_down_proj); ggml_cl_transform_tensor(layer.c_attn_wqkv_weight->data,layer.c_attn_wqkv_weight); vram_total += ggml_nbytes(layer.c_attn_wqkv_weight); ggml_cl_transform_tensor(layer.c_attn_out_proj_weight->data,layer.c_attn_out_proj_weight); vram_total += ggml_nbytes(layer.c_attn_out_proj_weight); #else ggml_cuda_transform_tensor(layer.ffn_up_proj->data,layer.ffn_up_proj); vram_total += ggml_nbytes(layer.ffn_up_proj); ggml_cuda_transform_tensor(layer.ffn_down_proj->data,layer.ffn_down_proj); vram_total += ggml_nbytes(layer.ffn_down_proj); ggml_cuda_transform_tensor(layer.c_attn_wqkv_weight->data,layer.c_attn_wqkv_weight); vram_total += ggml_nbytes(layer.c_attn_wqkv_weight); ggml_cuda_transform_tensor(layer.c_attn_out_proj_weight->data,layer.c_attn_out_proj_weight); vram_total += ggml_nbytes(layer.c_attn_out_proj_weight); #endif } fprintf(stderr, "%s: [GPU] total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024); } #endif return true; } // evaluate the transformer // // - model: the model // - n_threads: number of threads to use // - n_past: the context size so far // - embd_inp: the embeddings of the tokens in the context // - embd_w: the predicted logits for the next token // bool mpt_eval(const mpt_model & model, const int n_threads, const int n_past, const std::vector & embd_inp, std::vector & embd_w, bool logits_all, size_t & mem_per_token, bool use_scratch) { const int N = embd_inp.size(); const auto & hparams = model.hparams; const int n_embd = hparams.d_model; const int n_layer = hparams.n_layers; const int n_head = hparams.n_heads; const int n_vocab = hparams.n_vocab; const int n_ctx = hparams.n_ctx; static size_t buf_size = 256u * 1024 * 1024; static void * buf = malloc(buf_size); // use 2 scratch buffers // TODO: very hacky solution - reimplement in a more elegant way //MPT 30B needs more scratch memory static size_t scr0_size = (n_embd>=7168?2048u:1024u)*1024*1024; static size_t scr1_size = (n_embd>=7168?2048u:1024u)*1024*1024; static void * scr0 = malloc(scr0_size); static void * scr1 = malloc(scr1_size); if (mem_per_token > 0 && (mem_per_token*N*2 + 64u*1024*1024) > buf_size) { const size_t buf_size_new = 320u*1024*1024 + 1.2*(mem_per_token*N); // add 10% to account for ggml object overhead // printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, // buf_size, buf_size_new); // reallocate if (buf_size_new > buf_size) { buf_size = buf_size_new; buf = realloc(buf, buf_size); if (buf == nullptr) { fprintf(stderr, "%s: failed to allocate %zu bytes. Try reducing batch size.\n", __func__, buf_size); return false; } } } struct ggml_init_params params; params.mem_size = buf_size; params.mem_buffer = buf; params.no_alloc = false; struct ggml_context * ctx0 = ggml_init(params); struct ggml_cgraph gf = {}; struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); memcpy(embd->data, embd_inp.data(), N * ggml_element_size(embd)); struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte_weight, embd); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * cur; if(use_scratch){ ggml_set_scratch(ctx0, { 0, scr0_size, scr0, }); } // a = self.ln_1(x) { cur = ggml_norm(ctx0, inpL); cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].norm_1_weight, cur), cur); } // self-attention // b, _, past_key_value = self.attn(a, past_key_value=past_key_value, // attn_bias=attn_bias, attention_mask=attention_mask, // is_causal=is_causal) { // compute QKV cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_wqkv_weight, cur); if (model.hparams.clip_qkv > 0.0f) { cur = ggml_clamp(ctx0, cur, -model.hparams.clip_qkv, model.hparams.clip_qkv); } struct ggml_tensor * Qcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0 * sizeof(float) * n_embd); struct ggml_tensor * Kcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1 * sizeof(float) * n_embd); struct ggml_tensor * Vcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2 * sizeof(float) * n_embd); // store key and value to memory { struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N * n_embd, (ggml_element_size(model.memory_k) * n_embd) * (il * n_ctx + n_past)); struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_v, N * n_embd, (ggml_element_size(model.memory_v) * n_embd) * (il * n_ctx + n_past)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v)); } // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, // 2, 1, 3) [64, N, 12] struct ggml_tensor * Q = ggml_permute( ctx0, ggml_cpy(ctx0, Qcur, ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd / n_head, n_head, N)), 0, 2, 1, 3); // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, // 3) [64, n_past + N, 12] struct ggml_tensor * K = ggml_permute(ctx0, ggml_reshape_3d(ctx0, ggml_view_1d(ctx0, model.memory_k, (n_past + N) * n_embd, il * n_ctx * ggml_element_size(model.memory_k) * n_embd), n_embd / n_head, n_head, n_past + N), 0, 2, 1, 3); // K * Q struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); // KQ_scaled = KQ / sqrt(n_embd/n_head) struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, ggml_new_f32(ctx0, 1.0f / sqrt(float(n_embd) / n_head))); struct ggml_tensor * KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, n_past, n_head, model.hparams.alibi_bias_max); // KQ_masked = mask_past(KQ_scaled) struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled_alibi, n_past); // KQ = soft_max(KQ_masked) struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, // 2, 0, 3).contiguous() [n_past + N, 64, 12] struct ggml_tensor * V_trans = ggml_cpy( ctx0, ggml_permute(ctx0, ggml_reshape_3d(ctx0, ggml_view_1d(ctx0, model.memory_v, (n_past + N) * n_embd, il * n_ctx * ggml_element_size(model.memory_v) * n_embd), n_embd / n_head, n_head, n_past + N), 1, 2, 0, 3), ggml_new_tensor_3d(ctx0, model.memory_v->type, n_past + N, n_embd / n_head, n_head)); // KQV = transpose(V) * KQ_soft_max struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max); // KQV_merged = KQV.permute(0, 2, 1, 3) struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); // cur = KQV_merged.contiguous().view(n_embd, N) cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); // projection { cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_out_proj_weight, cur); } } inpL = ggml_add(ctx0, inpL, cur); if(use_scratch){ ggml_set_scratch(ctx0, { 0, scr1_size, scr1, }); } // m = self.ln_2(x) { cur = ggml_norm(ctx0, inpL); cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].norm_2_weight, cur), cur); } // n = self.mlp(m) { cur = ggml_mul_mat(ctx0, model.layers[il].ffn_up_proj, cur); // GELU activation cur = ggml_gelu(ctx0, cur); // projection // cur = proj_w*cur + proj_b cur = ggml_mul_mat(ctx0, model.layers[il].ffn_down_proj, cur); } // x = x + n inpL = ggml_add(ctx0, inpL, cur); } if(use_scratch){ ggml_set_scratch(ctx0, { 0, scr0_size, scr0, }); } // norm { inpL = ggml_norm(ctx0, inpL); // inpL = ln_f_g*inpL inpL = ggml_mul(ctx0, ggml_repeat(ctx0, model.norm_f_weight, inpL), inpL); } if(use_scratch){ ggml_set_scratch(ctx0, { 0, 0, nullptr, }); } // output embedding weight tied to input embedding inpL = ggml_mul_mat(ctx0, model.wte_weight, inpL); // logits -> probs // inpL = ggml_soft_max(ctx0, inpL); // run the computation ggml_build_forward_expand(&gf, inpL); kcpp_graph_compute_helper(&gf, n_threads); // std::cout << "Qcur" << std::endl; // print_tensor(Qcur); // if (n_past%100 == 0) { // ggml_graph_print(&gf); // ggml_graph_dump_dot(&gf, NULL, "mpt-model.dot"); // } if (logits_all) { // return result for all tokens embd_w.resize(n_vocab *N); memcpy(embd_w.data(), (float *)ggml_get_data(inpL) , sizeof(float) * n_vocab * N); } else { // return result for just the last token embd_w.resize(n_vocab); memcpy(embd_w.data(), (float *)ggml_get_data(inpL) + (n_vocab * (N - 1)), sizeof(float) * n_vocab); } if (mem_per_token == 0) { mem_per_token = ggml_used_mem(ctx0) / N; } // printf("used_mem = %zu\n", ggml_used_mem(ctx0)); ggml_free(ctx0); return true; }