Spaces:
Build error
Build error
// Various helper functions and utilities | |
// | |
// CLI argument parsing | |
// | |
int32_t get_num_physical_cores(); | |
struct gpt_params { | |
uint32_t seed = -1; // RNG seed | |
int32_t n_threads = get_num_physical_cores(); | |
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads) | |
int32_t n_predict = -1; // new tokens to predict | |
int32_t n_ctx = 512; // context size | |
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS) | |
int32_t n_keep = 0; // number of tokens to keep from initial prompt | |
int32_t n_draft = 16; // number of tokens to draft during speculative decoding | |
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited) | |
int32_t n_parallel = 1; // number of parallel sequences to decode | |
int32_t n_sequences = 1; // number of sequences to decode | |
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default) | |
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default) | |
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors | |
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs | |
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens. | |
int32_t n_beams = 0; // if non-zero then use beam search of given width. | |
float rope_freq_base = 0.0f; // RoPE base frequency | |
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor | |
// sampling parameters | |
int32_t top_k = 40; // <= 0 to use vocab size | |
float top_p = 0.95f; // 1.0 = disabled | |
float tfs_z = 1.00f; // 1.0 = disabled | |
float typical_p = 1.00f; // 1.0 = disabled | |
float temp = 0.80f; // 1.0 = disabled | |
float repeat_penalty = 1.10f; // 1.0 = disabled | |
int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size) | |
float frequency_penalty = 0.00f; // 0.0 = disabled | |
float presence_penalty = 0.00f; // 0.0 = disabled | |
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0 | |
float mirostat_tau = 5.00f; // target entropy | |
float mirostat_eta = 0.10f; // learning rate | |
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens | |
// Classifier-Free Guidance | |
// https://arxiv.org/abs/2306.17806 | |
std::string cfg_negative_prompt; // string to help guidance | |
float cfg_scale = 1.f; // How strong is guidance | |
std::string model = "models/7B/ggml-model-f16.gguf"; // model path | |
std::string model_draft = ""; // draft model for speculative decoding | |
std::string model_alias = "unknown"; // model alias | |
std::string prompt = ""; | |
std::string prompt_file = ""; // store the external prompt file name | |
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state | |
std::string input_prefix = ""; // string to prefix user inputs with | |
std::string input_suffix = ""; // string to suffix user inputs with | |
std::string grammar = ""; // optional BNF-like grammar to constrain sampling | |
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted | |
std::string logdir = ""; // directory in which to save YAML log files | |
std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale | |
std::string lora_base = ""; // base model path for the lora adapter | |
int ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used. | |
int ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line | |
// (which is more convenient to use for plotting) | |
// | |
bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt | |
size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score | |
bool mul_mat_q = true; // if true, use mul_mat_q kernels instead of cuBLAS | |
bool memory_f16 = true; // use f16 instead of f32 for memory kv | |
bool random_prompt = false; // do not randomize prompt if none provided | |
bool use_color = false; // use color to distinguish generations and inputs | |
bool interactive = false; // interactive mode | |
bool prompt_cache_all = false; // save user input and generations to prompt cache | |
bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it | |
bool embedding = false; // get only sentence embedding | |
bool escape = false; // escape "\n", "\r", "\t", "\'", "\"", and "\\" | |
bool interactive_first = false; // wait for user input immediately | |
bool multiline_input = false; // reverse the usage of `\` | |
bool simple_io = false; // improves compatibility with subprocesses and limited consoles | |
bool cont_batching = false; // insert new sequences for decoding on-the-fly | |
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix | |
bool ignore_eos = false; // ignore generated EOS tokens | |
bool instruct = false; // instruction mode (used for Alpaca models) | |
bool penalize_nl = true; // consider newlines as a repeatable token | |
bool logits_all = false; // return logits for all tokens in the batch | |
bool use_mmap = true; // use mmap for faster loads | |
bool use_mlock = false; // use mlock to keep model in memory | |
bool numa = false; // attempt optimizations that help on some NUMA systems | |
bool verbose_prompt = false; // print prompt tokens before generation | |
bool infill = false; // use infill mode | |
}; | |
bool gpt_params_parse(int argc, char ** argv, gpt_params & params); | |
void gpt_print_usage(int argc, char ** argv, const gpt_params & params); | |
std::string get_system_info(const gpt_params & params); | |
std::string gpt_random_prompt(std::mt19937 & rng); | |
void process_escapes(std::string& input); | |
// | |
// Model utils | |
// | |
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params); | |
struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params); | |
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params); | |
// | |
// Vocab utils | |
// | |
// tokenizes a string into a vector of tokens | |
// should work similar to Python's `tokenizer.encode` | |
std::vector<llama_token> llama_tokenize( | |
const struct llama_context * ctx, | |
const std::string & text, | |
bool add_bos); | |
std::vector<llama_token> llama_tokenize( | |
const struct llama_model * model, | |
const std::string & text, | |
bool add_bos); | |
// tokenizes a token into a piece | |
// should work similar to Python's `tokenizer.id_to_piece` | |
std::string llama_token_to_piece( | |
const struct llama_context * ctx, | |
llama_token token); | |
// TODO: these should be moved in llama.h C-style API under single `llama_detokenize` function | |
// that takes into account the tokenizer type and decides how to handle the leading space | |
// | |
// detokenizes a vector of tokens into a string | |
// should work similar to Python's `tokenizer.decode` | |
// removes the leading space from the first non-BOS token | |
std::string llama_detokenize_spm( | |
llama_context * ctx, | |
const std::vector<llama_token> & tokens); | |
// detokenizes a vector of tokens into a string | |
// should work similar to Python's `tokenizer.decode` | |
std::string llama_detokenize_bpe( | |
llama_context * ctx, | |
const std::vector<llama_token> & tokens); | |
// | |
// Sampling utils | |
// | |
// this is a common sampling function used across the examples for convenience | |
// it can serve as a starting point for implementing your own sampling function | |
// | |
// required: | |
// - ctx: context to use for sampling | |
// - params: sampling parameters | |
// | |
// optional: | |
// - ctx_guidance: context to use for classifier-free guidance, ignore if NULL | |
// - grammar: grammar to use for sampling, ignore if NULL | |
// - last_tokens: needed for repetition penalty, ignore if empty | |
// - idx: sample from llama_get_logits_ith(ctx, idx) | |
// | |
// returns: | |
// - token: sampled token | |
// - candidates: vector of candidate tokens | |
// | |
llama_token llama_sample_token( | |
struct llama_context * ctx, | |
struct llama_context * ctx_guidance, | |
struct llama_grammar * grammar, | |
const struct gpt_params & params, | |
const std::vector<llama_token> & last_tokens, | |
std::vector<llama_token_data> & candidates, | |
int idx = 0); | |
// | |
// YAML utils | |
// | |
bool create_directory_with_parents(const std::string & path); | |
void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector<float> & data); | |
void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector<int> & data); | |
void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data); | |
std::string get_sortable_timestamp(); | |
void dump_non_result_info_yaml( | |
FILE * stream, const gpt_params & params, const llama_context * lctx, | |
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc); | |