Spaces:
Build error
Build error
File size: 109,704 Bytes
3e5595b 81bf9b4 3e5595b 81bf9b4 3e5595b 81bf9b4 3e5595b b439a8f 3e5595b b439a8f 3e5595b 81bf9b4 3e5595b 81bf9b4 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 |
// Defines fileno on msys:
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#include <cstdint>
#include <cstdio>
#endif
#include "llama_v2-util.h"
#include "llama_v2.h"
#include "ggml_v2.h"
#ifdef GGML_USE_CUBLAS
#include "ggml_v2-cuda.h"
#endif
#if defined(GGML_USE_CLBLAST)
#include "ggml_v2-opencl.h"
#endif
#include <array>
#include <ctime>
#include <cinttypes>
#include <fstream>
#include <random>
#include <map>
#include <unordered_map>
#include <queue>
#include <cassert>
#include <cstring>
#include <climits>
#include <memory>
#include <algorithm>
#include <initializer_list>
#include <thread>
#include <atomic>
#include <mutex>
#include <sstream>
#include <numeric>
#define LLAMA_USE_SCRATCH
#define LLAMA_V2_MAX_SCRATCH_BUFFERS 16
// available llama models
enum e_model2 {
MODEL_UNKNOWN_2,
MODEL_7B_2,
MODEL_13B_2,
MODEL_30B_2,
MODEL_65B_2,
};
static const size_t MB_2 = 1024*1024;
// computed for n_ctx == 2048
// TODO: dynamically determine these sizes
// needs modifications in ggml
static const std::map<e_model2, size_t> & MEM_REQ_SCRATCH0_2()
{
static std::map<e_model2, size_t> k_sizes = {
{ MODEL_UNKNOWN_2, 512ull * MB_2 },
{ MODEL_7B_2, 512ull * MB_2 },
{ MODEL_13B_2, 512ull * MB_2 },
{ MODEL_30B_2, 640ull * MB_2 },
{ MODEL_65B_2, 1024ull * MB_2 },
};
return k_sizes;
}
static const std::map<e_model2, size_t> & MEM_REQ_SCRATCH1_2()
{
static std::map<e_model2, size_t> k_sizes = {
{ MODEL_UNKNOWN_2, 512ull * MB_2 },
{ MODEL_7B_2, 512ull * MB_2 },
{ MODEL_13B_2, 512ull * MB_2 },
{ MODEL_30B_2, 640ull * MB_2 },
{ MODEL_65B_2, 1024ull * MB_2 },
};
return k_sizes;
}
// 2*n_embd*n_ctx*n_layer*sizeof(float16)
static const std::map<e_model2, size_t> & MEM_REQ_KV_SELF_2()
{
static std::map<e_model2, size_t> k_sizes = {
{ MODEL_UNKNOWN_2, 1026ull * MB_2 },
{ MODEL_7B_2, 1026ull * MB_2 },
{ MODEL_13B_2, 1608ull * MB_2 },
{ MODEL_30B_2, 3124ull * MB_2 },
{ MODEL_65B_2, 5120ull * MB_2 },
};
return k_sizes;
}
// this is mostly needed for temporary mul_mat buffers to dequantize the data
// not actually needed if BLAS is disabled
static const std::map<e_model2, size_t> & MEM_REQ_EVAL_2()
{
static std::map<e_model2, size_t> k_sizes = {
{ MODEL_UNKNOWN_2, 800ull * MB_2 },
{ MODEL_7B_2, 800ull * MB_2 },
{ MODEL_13B_2, 1024ull * MB_2 },
{ MODEL_30B_2, 1280ull * MB_2 },
{ MODEL_65B_2, 1536ull * MB_2 },
};
return k_sizes;
}
// default hparams (LLaMA 7B)
struct llama_v2_hparams {
uint32_t n_vocab = 32000;
uint32_t n_ctx = 512; // this is provided as user input?
uint32_t n_embd = 4096;
uint32_t n_mult = 256;
uint32_t n_head = 32;
uint32_t n_layer = 32;
uint32_t n_rot = 64;
enum llama_v2_ftype ftype = LLAMA_V2_FTYPE_MOSTLY_F16;
bool operator!=(const llama_v2_hparams & other) const {
return memcmp(this, &other, sizeof(llama_v2_hparams));
}
};
struct llama_v2_layer {
// normalization
struct ggml_v2_tensor * attention_norm;
// attention
struct ggml_v2_tensor * wq;
struct ggml_v2_tensor * wk;
struct ggml_v2_tensor * wv;
struct ggml_v2_tensor * wo;
// normalization
struct ggml_v2_tensor * ffn_norm;
// ff
struct ggml_v2_tensor * w1;
struct ggml_v2_tensor * w2;
struct ggml_v2_tensor * w3;
};
struct llama_v2_kv_cache {
struct ggml_v2_tensor * k;
struct ggml_v2_tensor * v;
struct ggml_v2_context * ctx = NULL;
llama_v2_ctx_buffer buf;
int n; // number of tokens currently in the cache
~llama_v2_kv_cache() {
if (ctx) {
ggml_v2_free(ctx);
}
}
};
struct llama_v2_model {
e_model2 type = MODEL_UNKNOWN_2;
llama_v2_hparams hparams;
struct ggml_v2_tensor * tok_embeddings;
struct ggml_v2_tensor * norm;
struct ggml_v2_tensor * output;
std::vector<llama_v2_layer> layers;
// context
struct ggml_v2_context * ctx = NULL;
// key + value cache for the self attention
// TODO: move to llama_v2_state
struct llama_v2_kv_cache kv_self;
// the model memory buffer
llama_v2_ctx_buffer buf;
// model memory mapped file
std::unique_ptr<llama_v2_mmap> mapping;
// objects representing data potentially being locked in memory
llama_v2_mlock mlock_buf;
llama_v2_mlock mlock_mmap;
// for quantize-stats only
std::vector<std::pair<std::string, struct ggml_v2_tensor *>> tensors_by_name;
~llama_v2_model() {
if (ctx) {
ggml_v2_free(ctx);
}
}
};
struct llama_v2_vocab {
using id = int32_t;
using token = std::string;
struct token_score {
token tok;
float score;
};
std::unordered_map<token, id> token_to_id;
std::vector<token_score> id_to_token;
};
struct llama_v2_context {
std::mt19937 rng;
int64_t t_load_us = 0;
int64_t t_start_us = 0;
bool has_evaluated_once = false;
int64_t t_sample_us = 0;
int64_t t_eval_us = 0;
int64_t t_p_eval_us = 0;
int32_t n_sample = 0; // number of tokens sampled
int32_t n_eval = 0; // number of eval calls
int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
llama_v2_model model;
llama_v2_vocab vocab;
size_t mem_per_token = 0;
// decode output (2-dimensional array: [n_tokens][n_vocab])
std::vector<float> logits;
bool logits_all = false;
// input embedding (1-dimensional array: [n_embd])
std::vector<float> embedding;
// memory buffers used to evaluate the model
// TODO: move in llama_v2_state
llama_v2_ctx_buffer buf_compute;
llama_v2_ctx_buffer buf_scratch[LLAMA_V2_MAX_SCRATCH_BUFFERS];
int buf_last = 0;
size_t buf_max_size[LLAMA_V2_MAX_SCRATCH_BUFFERS] = { 0 };
void use_buf(struct ggml_v2_context * ctx, int i) {
#if defined(LLAMA_USE_SCRATCH)
size_t last_size = 0;
if (i == -1) {
last_size = ggml_v2_set_scratch(ctx, { 0, 0, nullptr, });
} else {
auto & buf = buf_scratch[i];
last_size = ggml_v2_set_scratch(ctx, { 0, buf.size, buf.addr, });
}
if (buf_last >= 0) {
buf_max_size[buf_last] = std::max(buf_max_size[buf_last], last_size);
}
buf_last = i;
#else
(void) i;
(void) ctx;
#endif
}
size_t get_buf_max_mem(int i) const {
#if defined(LLAMA_USE_SCRATCH)
return buf_max_size[i];
#else
(void) i;
return 0;
#endif
}
};
template <typename T>
static T checked_mul2(T a, T b) {
T ret = a * b;
if (a != 0 && ret / a != b) {
throw format("overflow multiplying %llu * %llu",
(unsigned long long) a, (unsigned long long) b);
}
return ret;
}
static size_t checked_div2(size_t a, size_t b) {
if (b == 0 || a % b != 0) {
throw format("error dividing %zu / %zu", a, b);
}
return a / b;
}
static std::string llama_v2_format_tensor_shape(const std::vector<uint32_t> & ne) {
char buf[256];
snprintf(buf, sizeof(buf), "%5u", ne.at(0));
for (size_t i = 1; i < ne.size(); i++) {
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), " x %5u", ne.at(i));
}
return buf;
}
static size_t llama_v2_calc_tensor_size(const std::vector<uint32_t> & ne, enum ggml_v2_type type) {
size_t size = ggml_v2_type_size(type);
for (uint32_t dim : ne) {
size = checked_mul2<size_t>(size, dim);
}
return size / ggml_v2_blck_size(type);
}
struct llama_v2_load_tensor_shard {
std::vector<uint32_t> ne;
size_t size;
enum ggml_v2_type type;
size_t file_idx;
size_t file_off;
void calc_size() {
size = llama_v2_calc_tensor_size(ne, type);
}
};
enum llama_v2_split_type {
SPLIT_NONE_2,
SPLIT_BY_COLUMNS_2,
SPLIT_BY_ROWS_2
};
struct llama_v2_load_tensor {
std::vector<llama_v2_load_tensor_shard> shards;
std::string name;
enum ggml_v2_type type = GGML_V2_TYPE_F32;
llama_v2_split_type split_type = SPLIT_NONE_2;
std::vector<uint32_t> ne;
size_t size;
struct ggml_v2_tensor * ggml_v2_tensor = NULL;
uint8_t * data;
llama_v2_load_tensor(const std::string & name) : name(name) {}
void calc_all() {
calc_type();
calc_split_type();
calc_ne();
calc_size();
}
void calc_type() {
const auto & first_shard = shards.at(0);
for (const auto & shard : shards) {
if (shard.type != first_shard.type) {
throw format("inconsistent tensor shard type in '%s'", name.c_str());
}
}
type = first_shard.type;
}
void calc_split_type() {
if (shards.at(0).ne.size() == 1 || // 1D tensors are just duplicated in every file
shards.size() == 1) { // only one file?
split_type = SPLIT_NONE_2;
} else if (name.find("tok_embeddings.") == 0 ||
name.find(".attention.wo.weight") != std::string::npos ||
name.find(".feed_forward.w2.weight") != std::string::npos) {
split_type = SPLIT_BY_COLUMNS_2;
} else {
split_type = SPLIT_BY_ROWS_2;
}
}
void calc_ne() {
const auto & first_shard = shards.at(0);
for (const auto & shard : shards) {
if (shard.ne != first_shard.ne) {
throw format("inconsistent tensor shard shape in '%s': first was %s, other was %s",
name.c_str(), llama_v2_format_tensor_shape(first_shard.ne).c_str(), llama_v2_format_tensor_shape(shard.ne).c_str());
}
}
ne = first_shard.ne;
LLAMA_V2_ASSERT(shards.size() <= UINT32_MAX);
uint32_t n_shards = (uint32_t) shards.size();
switch (split_type) {
case SPLIT_NONE_2:
ne = first_shard.ne;
break;
case SPLIT_BY_COLUMNS_2:
ne = {checked_mul2<uint32_t>(first_shard.ne[0], n_shards),
first_shard.ne[1]};
break;
case SPLIT_BY_ROWS_2:
ne = {first_shard.ne[0],
checked_mul2<uint32_t>(first_shard.ne[1], n_shards)};
break;
}
}
void calc_size() {
size = llama_v2_calc_tensor_size(ne, type);
}
};
struct llama_v2_load_tensors_map {
// tensors is kept in a separate vector to preserve file order
std::vector<llama_v2_load_tensor> tensors;
std::unordered_map<std::string, size_t> name_to_idx;
};
enum llama_v2_file_version {
LLAMA_V2_FILE_VERSION_GGML,
LLAMA_V2_FILE_VERSION_GGMF_V1, // added version field and scores in vocab
LLAMA_V2_FILE_VERSION_GGJT_V1, // added padding
LLAMA_V2_FILE_VERSION_GGJT_V2, // changed quantization format
LLAMA_V2_FILE_VERSION_GGJT_V3, // changed Q4 and Q8 quantization format
};
struct llama_v2_file_loader {
llama_v2_file file;
llama_v2_file_version file_version;
llama_v2_hparams hparams;
llama_v2_vocab vocab;
llama_v2_file_loader(const char * fname, size_t file_idx, llama_v2_load_tensors_map & tensors_map)
: file(fname, "rb") {
fprintf(stderr, "llama.cpp: loading model from %s\n", fname);
read_magic();
read_hparams();
read_vocab();
read_tensor_metadata(file_idx, tensors_map);
}
void read_magic() {
uint32_t magic = file.read_u32();
uint32_t version = 0;
if (magic != 'ggml') {
version = file.read_u32();
}
if (magic == 'ggml' && version == 0) {
file_version = LLAMA_V2_FILE_VERSION_GGML;
} else if (magic == 'ggmf' && version == 1) {
file_version = LLAMA_V2_FILE_VERSION_GGMF_V1;
} else if (magic == 'ggjt' && version == 1) {
file_version = LLAMA_V2_FILE_VERSION_GGJT_V1;
} else if (magic == 'ggjt' && version == 2) {
file_version = LLAMA_V2_FILE_VERSION_GGJT_V2;
} else if (magic == 'ggjt' && version == 3) {
file_version = LLAMA_V2_FILE_VERSION_GGJT_V3;
} else {
throw format("unknown (magic, version) combination: %08x, %08x; is this really a GGML file?",
magic, version);
}
}
void read_hparams() {
hparams.n_vocab = file.read_u32();
hparams.n_embd = file.read_u32();
hparams.n_mult = file.read_u32();
hparams.n_head = file.read_u32();
hparams.n_layer = file.read_u32();
hparams.n_rot = file.read_u32();
hparams.ftype = (enum llama_v2_ftype) file.read_u32();
}
void read_vocab() {
vocab.id_to_token.resize(hparams.n_vocab);
int32_t vocabloops = hparams.n_vocab;
if(vocabloops==32001 && file_version == LLAMA_V2_FILE_VERSION_GGML)
{
printf("---\n!! WARNING: Model appears to be GPT4ALL v1 model, triggering compatibility fix !!\n---\n");
vocabloops -= 1;
}
for (uint32_t i = 0; i < vocabloops; i++) {
uint32_t len = file.read_u32();
std::string word = file.read_string(len);
float score = 0.0f;
if (file_version >= LLAMA_V2_FILE_VERSION_GGMF_V1) {
file.read_raw(&score, sizeof(score));
}
vocab.token_to_id[word] = i;
auto & tok_score = vocab.id_to_token[i];
tok_score.tok = std::move(word);
tok_score.score = score;
}
}
void read_tensor_metadata(size_t file_idx, llama_v2_load_tensors_map & tensors_map) {
while (file.tell() < file.size) {
llama_v2_load_tensor_shard shard;
uint32_t n_dims = file.read_u32();
uint32_t name_len = file.read_u32();
shard.type = (enum ggml_v2_type) file.read_u32();
shard.ne.resize(n_dims);
file.read_raw(shard.ne.data(), sizeof(shard.ne[0]) * n_dims);
std::string name = file.read_string(name_len);
if (n_dims < 1 || n_dims > 2) {
throw format("llama.cpp: tensor '%s' should not be %u-dimensional", name.c_str(), n_dims);
}
switch (shard.type) {
case GGML_V2_TYPE_F32:
case GGML_V2_TYPE_F16:
case GGML_V2_TYPE_Q4_0:
case GGML_V2_TYPE_Q4_1:
case GGML_V2_TYPE_Q4_2:
case GGML_V2_TYPE_Q4_3:
case GGML_V2_TYPE_Q5_0:
case GGML_V2_TYPE_Q5_1:
case GGML_V2_TYPE_Q8_0:
break;
default: {
throw format("unrecognized tensor type %u\n", shard.type);
}
}
if (file_version >= LLAMA_V2_FILE_VERSION_GGJT_V1) {
// skip to the next multiple of 32 bytes
file.seek(-file.tell() & 31, SEEK_CUR);
}
shard.file_idx = file_idx;
shard.file_off = file.tell();
shard.calc_size();
file.seek(shard.size, SEEK_CUR);
auto it = tensors_map.name_to_idx.find(name);
size_t idx;
if (it != tensors_map.name_to_idx.end()) {
idx = it->second;
} else {
tensors_map.tensors.emplace_back(name);
idx = tensors_map.tensors.size() - 1;
tensors_map.name_to_idx.emplace(name, idx);
}
tensors_map.tensors.at(idx).shards.push_back(shard);
}
}
};
struct llama_v2_file_saver {
llama_v2_file file;
llama_v2_file_loader * any_file_loader;
llama_v2_file_saver(const char * fname, llama_v2_file_loader * any_file_loader, enum llama_v2_ftype new_ftype)
: file(fname, "wb"), any_file_loader(any_file_loader) {
fprintf(stderr, "llama.cpp: saving model to %s\n", fname);
write_magic();
write_hparams(new_ftype);
write_vocab();
}
void write_magic() {
file.write_u32(LLAMA_V2_FILE_MAGIC); // magic
file.write_u32(LLAMA_V2_FILE_VERSION); // version
}
void write_hparams(enum llama_v2_ftype new_ftype) {
const llama_v2_hparams & hparams = any_file_loader->hparams;
file.write_u32(hparams.n_vocab);
file.write_u32(hparams.n_embd);
file.write_u32(hparams.n_mult);
file.write_u32(hparams.n_head);
file.write_u32(hparams.n_layer);
file.write_u32(hparams.n_rot);
file.write_u32(new_ftype);
}
void write_vocab() {
if (any_file_loader->file_version == LLAMA_V2_FILE_VERSION_GGML) {
fprintf(stderr, "llama.cpp: WARNING: input is an old file that doesn't have scores; will add dummy scores\n");
}
uint32_t n_vocab = any_file_loader->hparams.n_vocab;
for (uint32_t i = 0; i < n_vocab; i++) {
const auto & token_score = any_file_loader->vocab.id_to_token.at(i);
file.write_u32((uint32_t) token_score.tok.size());
file.write_raw(token_score.tok.data(), token_score.tok.size());
file.write_raw(&token_score.score, sizeof(token_score.score));
}
}
void write_tensor(llama_v2_load_tensor & tensor, enum ggml_v2_type new_type, const void * new_data, size_t new_size) {
switch (new_type) {
case GGML_V2_TYPE_F32:
case GGML_V2_TYPE_F16:
case GGML_V2_TYPE_Q4_0:
case GGML_V2_TYPE_Q4_1:
case GGML_V2_TYPE_Q4_2:
case GGML_V2_TYPE_Q4_3:
case GGML_V2_TYPE_Q5_0:
case GGML_V2_TYPE_Q5_1:
case GGML_V2_TYPE_Q8_0:
break;
default: LLAMA_V2_ASSERT(false);
}
file.write_u32((uint32_t) tensor.ne.size());
file.write_u32((uint32_t) tensor.name.size());
file.write_u32(new_type);
file.write_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * tensor.ne.size());
file.write_raw(tensor.name.data(), tensor.name.size());
file.seek(-file.tell() & 31, SEEK_CUR);
LLAMA_V2_ASSERT(new_size == llama_v2_calc_tensor_size(tensor.ne, new_type));
file.write_raw(new_data, new_size);
}
};
struct llama_v2_model_loader {
std::vector<std::unique_ptr<llama_v2_file_loader>> file_loaders;
llama_v2_load_tensors_map tensors_map;
bool use_mmap;
size_t num_ggml_v2_tensors_created = 0;
struct ggml_v2_context * ggml_v2_ctx = NULL;
std::unique_ptr<llama_v2_mmap> mapping;
llama_v2_model_loader(const std::string & fname_base, bool use_mmap, bool vocab_only) {
auto * first_file = new llama_v2_file_loader(fname_base.c_str(), 0, tensors_map);
file_loaders.emplace_back(first_file);
uint32_t n_parts = vocab_only ? 1 : guess_n_parts();
for (uint32_t i = 1; i < n_parts; i++) {
std::string fname = fname_base + "." + std::to_string(i);
auto * ith_file = new llama_v2_file_loader(fname.c_str(), i, tensors_map);
file_loaders.emplace_back(ith_file);
if (ith_file->hparams != first_file->hparams) {
throw format("llama.cpp: hparams inconsistent between files");
}
}
if (!llama_v2_mmap::SUPPORTED) {
use_mmap = false;
}
if (use_mmap && alignment_prevents_mmap()) {
fprintf(stderr, "llama.cpp: can't use mmap because tensors are not aligned; convert to new format to avoid this\n");
use_mmap = false;
}
this->use_mmap = use_mmap;
for (llama_v2_load_tensor & lt : tensors_map.tensors) {
lt.calc_all();
}
}
bool alignment_prevents_mmap() {
for (const llama_v2_load_tensor & lt : tensors_map.tensors) {
for (const llama_v2_load_tensor_shard & shard : lt.shards) {
if (shard.file_off & 3) {
return true;
}
}
}
return false;
}
uint32_t guess_n_parts() const {
auto it = tensors_map.name_to_idx.find("tok_embeddings.weight");
if (it == tensors_map.name_to_idx.end()) {
throw std::string("missing tok_embeddings.weight");
}
const llama_v2_load_tensor & lt = tensors_map.tensors.at(it->second);
return file_loaders.at(0)->hparams.n_embd / lt.shards.at(0).ne.at(0);
}
void calc_sizes(size_t * ctx_size_p, size_t * mmapped_size_p) const {
*ctx_size_p = *mmapped_size_p = 0;
for (const llama_v2_load_tensor & lt : tensors_map.tensors) {
*ctx_size_p += sizeof(struct ggml_v2_tensor) + GGML_V2_OBJECT_SIZE;
*(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size;
}
}
struct ggml_v2_tensor * get_tensor(const std::string & name, const std::vector<uint32_t> & ne) {
auto it = tensors_map.name_to_idx.find(name);
if (it == tensors_map.name_to_idx.end()) {
throw format("llama.cpp: tensor '%s' is missing from model", name.c_str());
}
llama_v2_load_tensor & lt = tensors_map.tensors.at(it->second);
if (lt.ne != ne) {
throw format("llama.cpp: tensor '%s' has wrong shape; expected %s, got %s",
name.c_str(), llama_v2_format_tensor_shape(ne).c_str(), llama_v2_format_tensor_shape(lt.ne).c_str());
}
return get_tensor_for(lt);
}
struct ggml_v2_tensor * get_tensor_for(llama_v2_load_tensor & lt) {
struct ggml_v2_tensor * tensor;
if (lt.ne.size() == 2) {
tensor = ggml_v2_new_tensor_2d(ggml_v2_ctx, lt.type, lt.ne.at(0), lt.ne.at(1));
} else {
LLAMA_V2_ASSERT(lt.ne.size() == 1);
tensor = ggml_v2_new_tensor_1d(ggml_v2_ctx, lt.type, lt.ne.at(0));
}
ggml_v2_set_name(tensor, lt.name.c_str());
LLAMA_V2_ASSERT(lt.ggml_v2_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor
lt.ggml_v2_tensor = tensor;
num_ggml_v2_tensors_created++;
return tensor;
}
void done_getting_tensors() const {
if (num_ggml_v2_tensors_created != tensors_map.tensors.size()) {
throw std::string("llama.cpp: file contained more tensors than expected");
}
}
void load_all_data(llama_v2_progress_callback progress_callback, void * progress_callback_user_data, llama_v2_mlock * lmlock) {
size_t data_size = 0;
for (const llama_v2_load_tensor & lt : tensors_map.tensors) {
data_size += lt.size;
}
if (use_mmap) {
mapping.reset(new llama_v2_mmap(&file_loaders.at(0)->file));
if (!lmlock) {
// Don't call the callback since the actual loading will be lazy
// and we can't measure it.
progress_callback = NULL;
}
if (lmlock) {
lmlock->init(mapping->addr);
}
}
size_t done_size = 0;
for (llama_v2_load_tensor & lt : tensors_map.tensors) {
if (progress_callback) {
progress_callback((float) done_size / data_size, progress_callback_user_data);
}
LLAMA_V2_ASSERT(lt.ggml_v2_tensor); // unused tensors should have been caught by load_data already
lt.data = (uint8_t *) lt.ggml_v2_tensor->data;
load_data_for(lt);
lt.ggml_v2_tensor->data = lt.data;
done_size += lt.size;
if (use_mmap && lmlock) {
lmlock->grow_to(done_size);
}
}
if (progress_callback) {
progress_callback(1.0f, progress_callback_user_data);
}
}
void load_data_for(llama_v2_load_tensor & lt) {
if (use_mmap) {
LLAMA_V2_ASSERT(lt.shards.size() == 1);
lt.data = (uint8_t *) mapping->addr + lt.shards.at(0).file_off;
} else if (lt.split_type == SPLIT_NONE_2) {
llama_v2_file & file = file_loaders.at(lt.shards.at(0).file_idx)->file;
file.seek(lt.shards.at(0).file_off, SEEK_SET);
file.read_raw(lt.data, lt.size);
} else if (lt.split_type == SPLIT_BY_ROWS_2) {
size_t offset = 0;
for (llama_v2_load_tensor_shard & shard : lt.shards) {
llama_v2_file & file = file_loaders.at(shard.file_idx)->file;
file.seek(shard.file_off, SEEK_SET);
file.read_raw(lt.data + offset, shard.size);
offset += shard.size;
}
LLAMA_V2_ASSERT(offset == lt.size);
} else if (lt.split_type == SPLIT_BY_COLUMNS_2) {
// Let's load the data into temporary buffers to ensure the OS performs large loads.
std::vector<llama_v2_buffer> tmp_bufs(lt.shards.size());
for (size_t i = 0; i < lt.shards.size(); i++) {
llama_v2_load_tensor_shard & shard = lt.shards.at(i);
llama_v2_file & file = file_loaders.at(shard.file_idx)->file;
file.seek(shard.file_off, SEEK_SET);
tmp_bufs.at(i).resize(shard.size);
file.read_raw(tmp_bufs.at(i).addr, shard.size);
}
// Then reshape.
size_t num_rows = lt.ne.at(1);
size_t per_shard_row_size = lt.shards.at(0).size / num_rows;
size_t out_offset = 0;
for (size_t row = 0; row < num_rows; row++) {
for (llama_v2_buffer & tmp_buf : tmp_bufs) {
memcpy(lt.data + out_offset,
tmp_buf.addr + row * per_shard_row_size,
per_shard_row_size);
out_offset += per_shard_row_size;
}
}
LLAMA_V2_ASSERT(out_offset == lt.size);
}
if (0) {
print_checksum(lt);
}
}
static void print_checksum(llama_v2_load_tensor & lt) {
uint32_t sum = 0;
for (size_t i = 0; i < lt.size; i++) {
uint8_t byte = lt.data[i];
sum = byte + (sum << 6) + (sum << 16) - sum; // sdbm hash
}
fprintf(stderr, "%s checksum: %#08x (%s, size %zu)\n", lt.name.c_str(), sum,
llama_v2_format_tensor_shape(lt.ne).c_str(), lt.size);
}
};
//
// kv cache
//
static bool kv_cache_init(
const struct llama_v2_hparams & hparams,
struct llama_v2_kv_cache & cache,
ggml_v2_type wtype,
int n_ctx) {
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int64_t n_mem = n_layer*n_ctx;
const int64_t n_elements = n_embd*n_mem;
cache.buf.resize(2u*n_elements*ggml_v2_type_size(wtype) + 2u*MB_2);
struct ggml_v2_init_params params;
params.mem_size = cache.buf.size;
params.mem_buffer = cache.buf.addr;
params.no_alloc = false;
cache.ctx = ggml_v2_init(params);
if (!cache.ctx) {
fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
return false;
}
cache.k = ggml_v2_new_tensor_1d(cache.ctx, wtype, n_elements);
cache.v = ggml_v2_new_tensor_1d(cache.ctx, wtype, n_elements);
ggml_v2_set_name(cache.k, "cache_k");
ggml_v2_set_name(cache.v, "cache_v");
return true;
}
struct llama_v2_context_params llama_v2_context_default_params() {
struct llama_v2_context_params result = {
/*.n_ctx =*/ 512,
/*.gpu_layers =*/ 0,
/*.seed =*/ -1,
/*.f16_kv =*/ true,
/*.logits_all =*/ false,
/*.vocab_only =*/ false,
/*.use_mmap =*/ true,
/*.use_mlock =*/ false,
/*.embedding =*/ false,
/*.progress_callback =*/ nullptr,
/*.progress_callback_user_data =*/ nullptr,
};
return result;
}
bool llama_v2_mmap_supported() {
return llama_v2_mmap::SUPPORTED;
}
bool llama_v2_mlock_supported() {
return llama_v2_mlock::SUPPORTED;
}
//
// model loading
//
static const char *llama_v2_file_version_name(llama_v2_file_version version) {
switch (version) {
case LLAMA_V2_FILE_VERSION_GGML: return "'ggml' (old version with low tokenizer quality and no mmap support)";
case LLAMA_V2_FILE_VERSION_GGMF_V1: return "ggmf v1 (old version with no mmap support)";
case LLAMA_V2_FILE_VERSION_GGJT_V1: return "ggjt v1 (pre #1405)";
case LLAMA_V2_FILE_VERSION_GGJT_V2: return "ggjt v2 (pre #1508)";
case LLAMA_V2_FILE_VERSION_GGJT_V3: return "ggjt v3 (latest)";
}
return "unknown";
}
static const char *llama_v2_ftype_name(enum llama_v2_ftype ftype) {
switch (ftype) {
case LLAMA_V2_FTYPE_ALL_F32: return "all F32";
case LLAMA_V2_FTYPE_MOSTLY_F16: return "mostly F16";
case LLAMA_V2_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0";
case LLAMA_V2_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1";
case LLAMA_V2_FTYPE_MOSTLY_Q4_1_SOME_F16:
return "mostly Q4_1, some F16";
case LLAMA_V2_FTYPE_MOSTLY_Q4_2: return "mostly Q4_2";
case LLAMA_V2_FTYPE_MOSTLY_Q4_3: return "mostly Q4_3";
case LLAMA_V2_FTYPE_MOSTLY_Q5_0: return "mostly Q5_0";
case LLAMA_V2_FTYPE_MOSTLY_Q5_1: return "mostly Q5_1";
case LLAMA_V2_FTYPE_MOSTLY_Q8_0: return "mostly Q8_0";
default: return "unknown, may not work";
}
}
static const char *llama_v2_model_type_name(e_model2 type) {
switch (type) {
case MODEL_7B_2: return "7B";
case MODEL_13B_2: return "13B";
case MODEL_30B_2: return "30B";
case MODEL_65B_2: return "65B";
default:
printf("\nWARNING: NON-STANDARD LLAMA FILE DETECTED. DEFAULT TO 7B SIZE.\n");
return "UNKNOWN";
}
}
static void llama_v2_model_load_internal(
const std::string & fname,
llama_v2_context & lctx,
int n_ctx,
int n_gpu_layers,
ggml_v2_type memory_type,
bool use_mmap,
bool use_mlock,
bool vocab_only,
llama_v2_progress_callback progress_callback,
void * progress_callback_user_data) {
lctx.t_start_us = ggml_v2_time_us();
std::unique_ptr<llama_v2_model_loader> ml(new llama_v2_model_loader(fname, use_mmap, vocab_only));
lctx.vocab = std::move(ml->file_loaders.at(0)->vocab);
auto & model = lctx.model;
model.hparams = ml->file_loaders.at(0)->hparams;
llama_v2_file_version file_version = ml->file_loaders.at(0)->file_version;
auto & hparams = model.hparams;
uint32_t n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
{
switch (hparams.n_layer) {
case 32: model.type = e_model2::MODEL_7B_2; break;
case 40: model.type = e_model2::MODEL_13B_2; break;
case 60: model.type = e_model2::MODEL_30B_2; break;
case 80: model.type = e_model2::MODEL_65B_2; break;
default: model.type = e_model2::MODEL_UNKNOWN_2; break;
}
hparams.n_ctx = n_ctx;
}
{
fprintf(stderr, "%s: format = %s\n", __func__, llama_v2_file_version_name(file_version));
fprintf(stderr, "%s: n_vocab = %u\n", __func__, hparams.n_vocab);
fprintf(stderr, "%s: n_ctx = %u\n", __func__, hparams.n_ctx);
fprintf(stderr, "%s: n_embd = %u\n", __func__, hparams.n_embd);
fprintf(stderr, "%s: n_mult = %u\n", __func__, hparams.n_mult);
fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head);
fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer);
fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot);
fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_v2_ftype_name(hparams.ftype));
fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff);
fprintf(stderr, "%s: n_parts = %zu\n", __func__, ml->file_loaders.size());
fprintf(stderr, "%s: model size = %s\n", __func__, llama_v2_model_type_name(model.type));
}
if (file_version < LLAMA_V2_FILE_VERSION_GGJT_V2) {
if (hparams.ftype != LLAMA_V2_FTYPE_ALL_F32 &&
hparams.ftype != LLAMA_V2_FTYPE_MOSTLY_F16 &&
hparams.ftype != LLAMA_V2_FTYPE_MOSTLY_Q8_0) {
printf("\nLegacy LLAMA GGJT v1 compatability changes triggered.\n");
}
}
if (file_version < LLAMA_V2_FILE_VERSION_GGJT_V3) {
if (hparams.ftype == LLAMA_V2_FTYPE_MOSTLY_Q4_0 ||
hparams.ftype == LLAMA_V2_FTYPE_MOSTLY_Q4_1 ||
hparams.ftype == LLAMA_V2_FTYPE_MOSTLY_Q8_0) {
printf("\nLegacy LLAMA GGJT v2 compatability changes triggered.\n");
}
}
if (vocab_only) {
return;
}
auto & ctx = model.ctx;
size_t ctx_size;
size_t mmapped_size;
ml->calc_sizes(&ctx_size, &mmapped_size);
fprintf(stderr, "%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/1024.0/1024.0);
// print memory requirements
{
const size_t scale = memory_type == GGML_V2_TYPE_F32 ? 2 : 1;
// this is the total memory required to run the inference
const size_t mem_required =
ctx_size +
mmapped_size +
MEM_REQ_SCRATCH0_2().at(model.type) +
MEM_REQ_SCRATCH1_2().at(model.type) +
MEM_REQ_EVAL_2().at(model.type);
// this is the memory required by one llama_v2_state
const size_t mem_required_state =
scale*MEM_REQ_KV_SELF_2().at(model.type);
fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
}
// create the ggml context
{
lctx.model.buf.resize(ctx_size);
if (use_mlock) {
lctx.model.mlock_buf.init(lctx.model.buf.addr);
lctx.model.mlock_buf.grow_to(lctx.model.buf.size);
}
struct ggml_v2_init_params params = {
/*.mem_size =*/ lctx.model.buf.size,
/*.mem_buffer =*/ lctx.model.buf.addr,
/*.no_alloc =*/ ml->use_mmap,
};
model.ctx = ggml_v2_init(params);
if (!model.ctx) {
throw format("ggml_v2_init() failed");
}
}
// prepare memory for the weights
{
const uint32_t n_embd = hparams.n_embd;
const uint32_t n_layer = hparams.n_layer;
const uint32_t n_vocab = hparams.n_vocab;
ml->ggml_v2_ctx = ctx;
model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab});
model.norm = ml->get_tensor("norm.weight", {n_embd});
model.output = ml->get_tensor("output.weight", {n_embd, n_vocab});
model.layers.resize(n_layer);
for (uint32_t i = 0; i < n_layer; ++i) {
auto & layer = model.layers[i];
std::string layers_i = "layers." + std::to_string(i);
layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd});
layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd});
layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd});
layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd});
layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd});
layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd});
layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd, n_ff});
layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd});
layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff});
}
}
ml->done_getting_tensors();
// populate `tensors_by_name`
for (llama_v2_load_tensor & lt : ml->tensors_map.tensors) {
model.tensors_by_name.emplace_back(lt.name, lt.ggml_v2_tensor);
}
ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL);
model.mapping = std::move(ml->mapping);
#if defined(GGML_USE_CUBLAS)
{
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
if(GetQuantsUnshuffled())
{
fprintf(stderr, "%s: [old cublas] offloading %d layers to GPU\n", __func__, n_gpu);
size_t vram_total = 0;
for (int i = 0; i < n_gpu; ++i) {
const auto & layer = model.layers[i];
ggml_v2_cuda_transform_tensor(layer.wq); vram_total += ggml_v2_nbytes(layer.wq);
ggml_v2_cuda_transform_tensor(layer.wk); vram_total += ggml_v2_nbytes(layer.wk);
ggml_v2_cuda_transform_tensor(layer.wv); vram_total += ggml_v2_nbytes(layer.wv);
ggml_v2_cuda_transform_tensor(layer.wo); vram_total += ggml_v2_nbytes(layer.wo);
ggml_v2_cuda_transform_tensor(layer.w1); vram_total += ggml_v2_nbytes(layer.w1);
ggml_v2_cuda_transform_tensor(layer.w2); vram_total += ggml_v2_nbytes(layer.w2);
ggml_v2_cuda_transform_tensor(layer.w3); vram_total += ggml_v2_nbytes(layer.w3);
}
if (n_gpu_layers > (int) hparams.n_layer) {
fprintf(stderr, "%s: [old cublas] offloading output layer to GPU\n", __func__);
ggml_v2_cuda_transform_tensor(model.output); vram_total += ggml_v2_nbytes(model.output);
}
fprintf(stderr, "%s: [old cublas] total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024);
}
else
{
if(n_gpu>0)
{
printf("\n[WARNING: Old format does not support GPU offloading! It will be deactivated!]\n");
}
}
}
#elif defined(GGML_USE_CLBLAST)
{
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
if(GetQuantsUnshuffled())
{
fprintf(stderr, "%s: [opencl] offloading %d layers to GPU\n", __func__, n_gpu);
size_t vram_total = 0;
for (int i = 0; i < n_gpu; ++i) {
const auto & layer = model.layers[i];
ggml_v2_cl_transform_tensor(layer.wq); vram_total += ggml_v2_nbytes(layer.wq);
ggml_v2_cl_transform_tensor(layer.wk); vram_total += ggml_v2_nbytes(layer.wk);
ggml_v2_cl_transform_tensor(layer.wv); vram_total += ggml_v2_nbytes(layer.wv);
ggml_v2_cl_transform_tensor(layer.wo); vram_total += ggml_v2_nbytes(layer.wo);
ggml_v2_cl_transform_tensor(layer.w1); vram_total += ggml_v2_nbytes(layer.w1);
ggml_v2_cl_transform_tensor(layer.w2); vram_total += ggml_v2_nbytes(layer.w2);
ggml_v2_cl_transform_tensor(layer.w3); vram_total += ggml_v2_nbytes(layer.w3);
}
if (n_gpu_layers > (int) hparams.n_layer) {
fprintf(stderr, "%s: [opencl] offloading output layer to GPU\n", __func__);
ggml_v2_cl_transform_tensor(model.output); vram_total += ggml_v2_nbytes(model.output);
}
fprintf(stderr, "%s: [opencl] total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024);
}
else
{
if(n_gpu>0)
{
printf("\n[WARNING: Old format does not support GPU offloading! It will be deactivated!]\n");
}
}
}
#else
(void) n_gpu_layers;
#endif
// loading time will be recalculate after the first eval, so
// we take page faults deferred by mmap() into consideration
lctx.t_load_us = ggml_v2_time_us() - lctx.t_start_us;
}
static bool llama_v2_model_load(
const std::string & fname,
llama_v2_context & lctx,
int n_ctx,
int n_gpu_layers,
ggml_v2_type memory_type,
bool use_mmap,
bool use_mlock,
bool vocab_only,
llama_v2_progress_callback progress_callback,
void *progress_callback_user_data) {
try {
llama_v2_model_load_internal(fname, lctx, n_ctx, n_gpu_layers, memory_type, use_mmap, use_mlock,
vocab_only, progress_callback, progress_callback_user_data);
return true;
} catch (const std::string & err) {
fprintf(stderr, "error loading model: %s\n", err.c_str());
return false;
}
}
// evaluate the transformer
//
// - lctx: llama context
// - tokens: new batch of tokens to process
// - n_past: the context size so far
// - n_threads: number of threads to use
//
static bool llama_v2_eval_internal(
llama_v2_context & lctx,
const llama_v2_token * tokens,
const int n_tokens,
const int n_past,
const int n_threads) {
// enforce that the first token is BOS (not needed, messes with my context manip code)
//if (n_past == 0 && tokens[0] != llama_v2_token_bos()) {
//fprintf(stderr, "%s: first token must be BOS\n", __func__);
// return false; //never fail. Not even in the face of Armageddon.
//}
const int64_t t_start_us = ggml_v2_time_us();
const int N = n_tokens;
const auto & model = lctx.model;
const auto & hparams = model.hparams;
const auto & kv_self = model.kv_self;
LLAMA_V2_ASSERT(!!kv_self.ctx);
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_head = hparams.n_head;
const int n_vocab = hparams.n_vocab;
const int n_rot = hparams.n_embd/hparams.n_head;
auto & mem_per_token = lctx.mem_per_token;
auto & buf_compute = lctx.buf_compute;
struct ggml_v2_init_params params = {
/*.mem_size =*/ buf_compute.size,
/*.mem_buffer =*/ buf_compute.addr,
/*.no_alloc =*/ false,
};
struct ggml_v2_context * ctx0 = ggml_v2_init(params);
// for big prompts, if BLAS is enabled, it is better to use only one thread
// otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
ggml_v2_cgraph gf = {};
gf.n_threads = N >= 32 && ggml_v2_cpu_has_blas() && !ggml_v2_cpu_has_gpublas() ? 1 : n_threads;
struct ggml_v2_tensor * embd = ggml_v2_new_tensor_1d(ctx0, GGML_V2_TYPE_I32, N);
ggml_v2_set_name(embd, "embd");
memcpy(embd->data, tokens, N*ggml_v2_element_size(embd));
struct ggml_v2_tensor * inpL = ggml_v2_get_rows(ctx0, model.tok_embeddings, embd);
for (int il = 0; il < n_layer; ++il) {
struct ggml_v2_tensor * inpSA = inpL;
struct ggml_v2_tensor * cur;
lctx.use_buf(ctx0, 0);
// norm
{
cur = ggml_v2_rms_norm(ctx0, inpL);
// cur = attention_norm*cur
cur = ggml_v2_mul(ctx0,
ggml_v2_repeat(ctx0, model.layers[il].attention_norm, cur),
cur);
}
// self-attention
{
// compute Q and K and RoPE them
struct ggml_v2_tensor * Qcur = ggml_v2_rope_inplace(ctx0, ggml_v2_reshape_3d(ctx0, ggml_v2_mul_mat(ctx0, model.layers[il].wq, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
struct ggml_v2_tensor * Kcur = ggml_v2_rope_inplace(ctx0, ggml_v2_reshape_3d(ctx0, ggml_v2_mul_mat(ctx0, model.layers[il].wk, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
ggml_v2_set_name(Qcur, "Qcur");
ggml_v2_set_name(Kcur, "Kcur");
// store key and value to memory
{
// compute the transposed [N, n_embd] V matrix
struct ggml_v2_tensor * Vcur = ggml_v2_transpose(ctx0, ggml_v2_reshape_2d(ctx0, ggml_v2_mul_mat(ctx0, model.layers[il].wv, cur), n_embd, N));
struct ggml_v2_tensor * k = ggml_v2_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_v2_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
struct ggml_v2_tensor * v = ggml_v2_view_2d(ctx0, kv_self.v, N, n_embd,
( n_ctx)*ggml_v2_element_size(kv_self.v),
(il*n_ctx)*ggml_v2_element_size(kv_self.v)*n_embd + n_past*ggml_v2_element_size(kv_self.v));
// important: storing RoPE-ed version of K in the KV cache!
ggml_v2_build_forward_expand(&gf, ggml_v2_cpy(ctx0, Kcur, k));
ggml_v2_build_forward_expand(&gf, ggml_v2_cpy(ctx0, Vcur, v));
}
struct ggml_v2_tensor * Q =
ggml_v2_permute(ctx0,
Qcur,
0, 2, 1, 3);
ggml_v2_set_name(Q, "Q");
struct ggml_v2_tensor * K =
ggml_v2_permute(ctx0,
ggml_v2_reshape_3d(ctx0,
ggml_v2_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_v2_element_size(kv_self.k)*n_embd),
n_embd/n_head, n_head, n_past + N),
0, 2, 1, 3);
ggml_v2_set_name(K, "K");
// K * Q
struct ggml_v2_tensor * KQ = ggml_v2_mul_mat(ctx0, K, Q);
ggml_v2_set_name(KQ, "KQ");
// KQ_scaled = KQ / sqrt(n_embd/n_head)
struct ggml_v2_tensor * KQ_scale = ggml_v2_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head));
ggml_v2_set_name(KQ_scale, "1/sqrt(n_embd/n_head)");
// KQ_scaled shape [n_past + N, N, n_head, 1]
struct ggml_v2_tensor * KQ_scaled = ggml_v2_scale_inplace(ctx0, KQ, KQ_scale);
ggml_v2_set_name(KQ_scaled, "KQ_scaled");
// KQ_masked = mask_past(KQ_scaled)
struct ggml_v2_tensor * KQ_masked = ggml_v2_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
ggml_v2_set_name(KQ_masked, "KQ_masked");
// KQ = soft_max(KQ_masked)
struct ggml_v2_tensor * KQ_soft_max = ggml_v2_soft_max_inplace(ctx0, KQ_masked);
ggml_v2_set_name(KQ_soft_max, "KQ_soft_max");
// split cached V into n_head heads
struct ggml_v2_tensor * V =
ggml_v2_view_3d(ctx0, kv_self.v,
n_past + N, n_embd/n_head, n_head,
n_ctx*ggml_v2_element_size(kv_self.v),
n_ctx*ggml_v2_element_size(kv_self.v)*n_embd/n_head,
il*n_ctx*ggml_v2_element_size(kv_self.v)*n_embd);
ggml_v2_set_name(V, "V");
#if 1
struct ggml_v2_tensor * KQV = ggml_v2_mul_mat(ctx0, V, KQ_soft_max);
ggml_v2_set_name(KQV, "KQV");
#else
// make V contiguous in memory to speed up the matmul, however we waste time on the copy
// on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
// is there a better way?
struct ggml_v2_tensor * V_cont = ggml_v2_cpy(ctx0, V, ggml_v2_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd/n_head, n_head));
struct ggml_v2_tensor * KQV = ggml_v2_mul_mat(ctx0, V_cont, KQ_soft_max);
#endif
// KQV_merged = KQV.permute(0, 2, 1, 3)
struct ggml_v2_tensor * KQV_merged = ggml_v2_permute(ctx0, KQV, 0, 2, 1, 3);
ggml_v2_set_name(KQV_merged, "KQV_merged");
// cur = KQV_merged.contiguous().view(n_embd, N)
cur = ggml_v2_cpy(ctx0,
KQV_merged,
ggml_v2_new_tensor_2d(ctx0, GGML_V2_TYPE_F32, n_embd, N));
ggml_v2_set_name(cur, "KQV_merged_contiguous");
// projection (no bias)
cur = ggml_v2_mul_mat(ctx0,
model.layers[il].wo,
cur);
}
lctx.use_buf(ctx0, 1);
struct ggml_v2_tensor * inpFF = ggml_v2_add(ctx0, cur, inpSA);
// feed-forward network
{
// norm
{
cur = ggml_v2_rms_norm(ctx0, inpFF);
// cur = ffn_norm*cur
cur = ggml_v2_mul(ctx0,
ggml_v2_repeat(ctx0, model.layers[il].ffn_norm, cur),
cur);
}
struct ggml_v2_tensor * tmp = ggml_v2_mul_mat(ctx0,
model.layers[il].w3,
cur);
cur = ggml_v2_mul_mat(ctx0,
model.layers[il].w1,
cur);
// SILU activation
cur = ggml_v2_silu(ctx0, cur);
cur = ggml_v2_mul(ctx0, cur, tmp);
cur = ggml_v2_mul_mat(ctx0,
model.layers[il].w2,
cur);
}
cur = ggml_v2_add(ctx0, cur, inpFF);
// input for next layer
inpL = cur;
}
lctx.use_buf(ctx0, 0);
// used at the end to optionally extract the embeddings
struct ggml_v2_tensor * embeddings = NULL;
// norm
{
inpL = ggml_v2_rms_norm(ctx0, inpL);
// inpL = norm*inpL
inpL = ggml_v2_mul(ctx0,
ggml_v2_repeat(ctx0, model.norm, inpL),
inpL);
embeddings = inpL;
}
// lm_head
inpL = ggml_v2_mul_mat(ctx0, model.output, inpL);
lctx.use_buf(ctx0, -1);
// logits -> probs
//inpL = ggml_v2_soft_max_inplace(ctx0, inpL);
// run the computation
ggml_v2_build_forward_expand(&gf, inpL);
ggml_v2_graph_compute (ctx0, &gf);
#ifdef GGML_V2_PERF
// print timing information per ggml operation (for debugging purposes)
// requires GGML_V2_PERF to be defined
ggml_v2_graph_print(&gf);
#endif
// plot the computation graph in dot format (for debugging purposes)
//if (n_past%100 == 0) {
// ggml_v2_graph_dump_dot(&gf, NULL, "llama.dot");
//}
//embd_w.resize(n_vocab*N);
//memcpy(embd_w.data(), ggml_v2_get_data(inpL), sizeof(float)*n_vocab*N);
// update kv token count
lctx.model.kv_self.n = n_past + N;
// extract logits
{
auto & logits_out = lctx.logits;
if (lctx.logits_all) {
logits_out.resize(n_vocab * N);
memcpy(logits_out.data(), (float *) ggml_v2_get_data(inpL), sizeof(float)*n_vocab*N);
} else {
// return result for just the last token
logits_out.resize(n_vocab);
memcpy(logits_out.data(), (float *) ggml_v2_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
}
}
// extract embeddings
if (!lctx.embedding.empty()) {
auto & embedding_out = lctx.embedding;
embedding_out.resize(n_embd);
memcpy(embedding_out.data(), (float *) ggml_v2_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd);
}
if (mem_per_token == 0) {
mem_per_token = ggml_v2_used_mem(ctx0)/N;
}
#if 0
printf("\n%s: used_mem = %.3f MB, scratch -- %.3f MB %.3f MB\n", __func__,
ggml_v2_used_mem(ctx0)/1024.0/1024.0,
lctx.get_buf_max_mem(0)/1024.0/1024.0,
lctx.get_buf_max_mem(1)/1024.0/1024.0);
#endif
ggml_v2_free(ctx0);
// measure the performance only for the single-token evals
if (N == 1) {
lctx.t_eval_us += ggml_v2_time_us() - t_start_us;
lctx.n_eval++;
}
else if (N > 1) {
lctx.t_p_eval_us += ggml_v2_time_us() - t_start_us;
lctx.n_p_eval += N;
}
return true;
}
//
// tokenizer
//
static size_t utf8_len2(char src) {
const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
uint8_t highbits = static_cast<uint8_t>(src) >> 4;
return lookup[highbits];
}
struct llama_v2_sp_symbol {
using index = int;
index prev;
index next;
const char * text;
size_t n;
};
static_assert(std::is_trivially_copyable<llama_v2_sp_symbol>::value, "llama_v2_sp_symbol is not trivially copyable");
struct llama_v2_sp_bigram {
struct comparator {
bool operator()(llama_v2_sp_bigram & l, llama_v2_sp_bigram & r) {
return (l.score < r.score) || (l.score == r.score && l.left > r.left);
}
};
using queue_storage = std::vector<llama_v2_sp_bigram>;
using queue = std::priority_queue<llama_v2_sp_bigram, queue_storage, comparator>;
llama_v2_sp_symbol::index left;
llama_v2_sp_symbol::index right;
float score;
size_t size;
};
// original implementation:
// https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
struct llama_v2_tokenizer {
llama_v2_tokenizer(const llama_v2_vocab & vocab): vocab_(vocab) {}
void tokenize(const std::string & text, std::vector<llama_v2_vocab::id> & output) {
// split string into utf8 chars
int index = 0;
size_t offs = 0;
while (offs < text.size()) {
llama_v2_sp_symbol sym;
size_t char_len = std::min(text.size() - offs, utf8_len2(text[offs]));
sym.text = text.c_str() + offs;
sym.n = char_len;
offs += char_len;
sym.prev = index - 1;
sym.next = offs == text.size() ? -1 : index + 1;
index++;
symbols_.emplace_back(sym);
}
// seed the work queue with all possible 2-character tokens.
for (size_t i = 1; i < symbols_.size(); ++i) {
try_add_bigram(i - 1, i);
}
// keep substituting the highest frequency pairs for as long as we can.
while (!work_queue_.empty()) {
auto bigram = work_queue_.top();
work_queue_.pop();
auto & left_sym = symbols_[bigram.left];
auto & right_sym = symbols_[bigram.right];
// if one of the symbols already got merged, skip it.
if (left_sym.n == 0 || right_sym.n == 0 ||
left_sym.n + right_sym.n != bigram.size) {
continue;
}
// merge the right sym into the left one
left_sym.n += right_sym.n;
right_sym.n = 0;
//printf("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
// remove the right sym from the chain
left_sym.next = right_sym.next;
if (right_sym.next >= 0) {
symbols_[right_sym.next].prev = bigram.left;
}
// find more substitutions
try_add_bigram(left_sym.prev, bigram.left);
try_add_bigram(bigram.left, left_sym.next);
}
for (int i = 0; i != -1; i = symbols_[i].next) {
auto & symbol = symbols_[i];
auto token = vocab_.token_to_id.find(std::string(symbol.text, symbol.n));
if (token == vocab_.token_to_id.end()) {
// output any symbols that did not form tokens as bytes.
for (int j = 0; j < (int) symbol.n; ++j) {
llama_v2_vocab::id token_id = static_cast<uint8_t>(symbol.text[j]) + 3;
output.push_back(token_id);
}
} else {
output.push_back((*token).second);
}
}
}
private:
void try_add_bigram(int left, int right) {
if (left == -1 || right == -1) {
return;
}
const std::string text = std::string(symbols_[left].text, symbols_[left].n + symbols_[right].n);
auto token = vocab_.token_to_id.find(text);
if (token == vocab_.token_to_id.end()) {
return;
}
if (static_cast<size_t>((*token).second) >= vocab_.id_to_token.size()) {
return;
}
const auto &tok_score = vocab_.id_to_token[(*token).second];
llama_v2_sp_bigram bigram;
bigram.left = left;
bigram.right = right;
bigram.score = tok_score.score;
bigram.size = text.size();
work_queue_.push(bigram);
}
const llama_v2_vocab & vocab_;
std::vector<llama_v2_sp_symbol> symbols_;
llama_v2_sp_bigram::queue work_queue_;
};
static std::vector<llama_v2_vocab::id> llama_v2_tokenize(const llama_v2_vocab & vocab, const std::string & text, bool bos) {
llama_v2_tokenizer tokenizer(vocab);
std::vector<llama_v2_vocab::id> output;
if (text.empty()) {
return output;
}
if (bos) {
output.push_back(llama_v2_token_bos());
}
tokenizer.tokenize(text, output);
return output;
}
//
// sampling
//
void llama_v2_sample_softmax(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates) {
assert(candidates->size > 0);
const int64_t t_start_sample_us = ggml_v2_time_us();
// Sort the logits in descending order
if (!candidates->sorted) {
std::sort(candidates->data, candidates->data + candidates->size, [](const llama_v2_token_data & a, const llama_v2_token_data & b) {
return a.logit > b.logit;
});
candidates->sorted = true;
}
float max_l = candidates->data[0].logit;
float cum_sum = 0.0f;
for (size_t i = 0; i < candidates->size; ++i) {
float p = expf(candidates->data[i].logit - max_l);
candidates->data[i].p = p;
cum_sum += p;
}
for (size_t i = 0; i < candidates->size; ++i) {
candidates->data[i].p /= cum_sum;
}
if (ctx) {
ctx->t_sample_us += ggml_v2_time_us() - t_start_sample_us;
}
}
void llama_v2_sample_top_k(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, int k, size_t min_keep) {
const int64_t t_start_sample_us = ggml_v2_time_us();
k = std::max(k, (int) min_keep);
k = std::min(k, (int) candidates->size);
// Sort scores in descending order
if (!candidates->sorted) {
auto comp = [](const llama_v2_token_data & a, const llama_v2_token_data & b) {
return a.logit > b.logit;
};
if (k == (int) candidates->size) {
std::sort(candidates->data, candidates->data + candidates->size, comp);
} else {
std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
}
candidates->sorted = true;
}
candidates->size = k;
if (ctx) {
ctx->t_sample_us += ggml_v2_time_us() - t_start_sample_us;
}
}
void llama_v2_sample_top_p(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, float p, size_t min_keep) {
if (p >= 1.0f) {
return;
}
const int64_t t_start_sample_us = ggml_v2_time_us();
llama_v2_sample_softmax(ctx, candidates);
// Compute the cumulative probabilities
float cum_sum = 0.0f;
size_t last_idx = candidates->size;
for (size_t i = 0; i < candidates->size; ++i) {
cum_sum += candidates->data[i].p;
// Check if the running sum is greater than p or if we have kept at least min_keep tokens
if (cum_sum > p && i >= min_keep) {
last_idx = i;
break;
}
}
// Resize the output vector to keep only the top-p tokens
candidates->size = last_idx;
if (ctx) {
ctx->t_sample_us += ggml_v2_time_us() - t_start_sample_us;
}
}
void llama_v2_sample_tail_free(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, float z, size_t min_keep) {
if (z >= 1.0f || candidates->size <= 2) {
return;
}
const int64_t t_start_sample_us = ggml_v2_time_us();
llama_v2_sample_softmax(nullptr, candidates);
// Compute the first and second derivatives
std::vector<float> first_derivatives(candidates->size - 1);
std::vector<float> second_derivatives(candidates->size - 2);
for (size_t i = 0; i < first_derivatives.size(); ++i) {
first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
}
for (size_t i = 0; i < second_derivatives.size(); ++i) {
second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
}
// Calculate absolute value of second derivatives
for (size_t i = 0; i < second_derivatives.size(); ++i) {
second_derivatives[i] = abs(second_derivatives[i]);
}
// Normalize the second derivatives
float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
for (float & value : second_derivatives) {
value /= second_derivatives_sum;
}
float cum_sum = 0.0f;
size_t last_idx = candidates->size;
for (size_t i = 0; i < second_derivatives.size(); ++i) {
cum_sum += second_derivatives[i];
// Check if the running sum is greater than z or if we have kept at least min_keep tokens
if (cum_sum > z && i >= min_keep) {
last_idx = i;
break;
}
}
// Resize the output vector to keep only the tokens above the tail location
candidates->size = last_idx;
if (ctx) {
ctx->t_sample_us += ggml_v2_time_us() - t_start_sample_us;
}
}
void llama_v2_sample_typical(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, float p, size_t min_keep) {
// Reference implementation:
// https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
if (p >= 1.0f) {
return;
}
const int64_t t_start_sample_us = ggml_v2_time_us();
// Compute the softmax of logits and calculate entropy
llama_v2_sample_softmax(nullptr, candidates);
float entropy = 0.0f;
for (size_t i = 0; i < candidates->size; ++i) {
entropy += -candidates->data[i].p * logf(candidates->data[i].p);
}
// Compute the absolute difference between negative log probability and entropy for each candidate
std::vector<float> shifted_scores;
for (size_t i = 0; i < candidates->size; ++i) {
float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
shifted_scores.push_back(shifted_score);
}
// Sort tokens based on the shifted_scores and their corresponding indices
std::vector<size_t> indices(candidates->size);
std::iota(indices.begin(), indices.end(), 0);
std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
return shifted_scores[a] < shifted_scores[b];
});
// Compute the cumulative probabilities
float cum_sum = 0.0f;
size_t last_idx = indices.size();
for (size_t i = 0; i < indices.size(); ++i) {
size_t idx = indices[i];
cum_sum += candidates->data[idx].p;
// Check if the running sum is greater than typical or if we have kept at least min_keep tokens
if (cum_sum > p && i >= min_keep - 1) {
last_idx = i + 1;
break;
}
}
// Resize the output vector to keep only the locally typical tokens
std::vector<llama_v2_token_data> new_candidates;
for (size_t i = 0; i < last_idx; ++i) {
size_t idx = indices[i];
new_candidates.push_back(candidates->data[idx]);
}
// Replace the data in candidates with the new_candidates data
std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
candidates->size = new_candidates.size();
if (ctx) {
ctx->t_sample_us += ggml_v2_time_us() - t_start_sample_us;
}
}
void llama_v2_sample_temperature(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates_p, float temp) {
const int64_t t_start_sample_us = ggml_v2_time_us();
for (size_t i = 0; i < candidates_p->size; ++i) {
candidates_p->data[i].logit /= temp;
}
if (ctx) {
ctx->t_sample_us += ggml_v2_time_us() - t_start_sample_us;
}
}
void llama_v2_sample_repetition_penalty(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, const llama_v2_token * last_tokens, size_t last_tokens_size, float penalty) {
if (last_tokens_size == 0 || penalty == 1.0f) {
return;
}
const int64_t t_start_sample_us = ggml_v2_time_us();
for (size_t i = 0; i < candidates->size; ++i) {
const auto * token_iter = std::find(last_tokens, last_tokens + last_tokens_size, candidates->data[i].id);
if (token_iter == last_tokens + last_tokens_size) {
continue;
}
// The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
// This is common fix for this problem, which is to multiply by the penalty instead of dividing.
if (candidates->data[i].logit <= 0) {
candidates->data[i].logit *= penalty;
} else {
candidates->data[i].logit /= penalty;
}
}
candidates->sorted = false;
if (ctx) {
ctx->t_sample_us += ggml_v2_time_us() - t_start_sample_us;
}
}
void llama_v2_sample_frequency_and_presence_penalties(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, const llama_v2_token * last_tokens_p, size_t last_tokens_size, float alpha_frequency, float alpha_presence) {
if (last_tokens_size == 0 || (alpha_frequency == 0.0f && alpha_presence == 0.0f)) {
return;
}
const int64_t t_start_sample_us = ggml_v2_time_us();
// Create a frequency map to count occurrences of each token in last_tokens
std::unordered_map<llama_v2_token, int> token_count;
for (size_t i = 0; i < last_tokens_size; ++i) {
token_count[last_tokens_p[i]]++;
}
// Apply frequency and presence penalties to the candidates
for (size_t i = 0; i < candidates->size; ++i) {
auto token_iter = token_count.find(candidates->data[i].id);
if (token_iter == token_count.end()) {
continue;
}
int count = token_iter->second;
candidates->data[i].logit -= float(count) * alpha_frequency + float(count > 0) * alpha_presence;
}
candidates->sorted = false;
if (ctx) {
ctx->t_sample_us += ggml_v2_time_us() - t_start_sample_us;
}
}
llama_v2_token llama_v2_sample_token_mirostat(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, float tau, float eta, int m, float * mu) {
assert(ctx);
auto N = float(llama_v2_n_vocab(ctx));
int64_t t_start_sample_us;
t_start_sample_us = ggml_v2_time_us();
llama_v2_sample_softmax(nullptr, candidates);
// Estimate s_hat using the most probable m tokens
float s_hat = 0.0;
float sum_ti_bi = 0.0;
float sum_ti_sq = 0.0;
for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
float t_i = logf(float(i + 2) / float(i + 1));
float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
sum_ti_bi += t_i * b_i;
sum_ti_sq += t_i * t_i;
}
s_hat = sum_ti_bi / sum_ti_sq;
// Compute k from the estimated s_hat and target surprise value
float epsilon_hat = s_hat - 1;
float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
// Sample the next word X using top-k sampling
llama_v2_sample_top_k(nullptr, candidates, int(k), 1);
if (ctx) {
ctx->t_sample_us += ggml_v2_time_us() - t_start_sample_us;
}
llama_v2_token X = llama_v2_sample_token(ctx, candidates);
t_start_sample_us = ggml_v2_time_us();
// Compute error as the difference between observed surprise and target surprise value
size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_v2_token_data & candidate) {
return candidate.id == X;
}));
float observed_surprise = -log2f(candidates->data[X_idx].p);
float e = observed_surprise - tau;
// Update mu using the learning rate and error
*mu = *mu - eta * e;
if (ctx) {
ctx->t_sample_us += ggml_v2_time_us() - t_start_sample_us;
ctx->n_sample++;
}
return X;
}
llama_v2_token llama_v2_sample_token_mirostat_v2(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, float tau, float eta, float * mu) {
assert(ctx);
int64_t t_start_sample_us;
t_start_sample_us = ggml_v2_time_us();
llama_v2_sample_softmax(ctx, candidates);
// Truncate the words with surprise values greater than mu
candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_v2_token_data & candidate) {
return -log2f(candidate.p) > *mu;
}));
// Normalize the probabilities of the remaining words
llama_v2_sample_softmax(ctx, candidates);
// Sample the next word X from the remaining words
if (ctx) {
ctx->t_sample_us += ggml_v2_time_us() - t_start_sample_us;
}
llama_v2_token X = llama_v2_sample_token(ctx, candidates);
t_start_sample_us = ggml_v2_time_us();
// Compute error as the difference between observed surprise and target surprise value
size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_v2_token_data & candidate) {
return candidate.id == X;
}));
float observed_surprise = -log2f(candidates->data[X_idx].p);
float e = observed_surprise - tau;
// Update mu using the learning rate and error
*mu = *mu - eta * e;
if (ctx) {
ctx->t_sample_us += ggml_v2_time_us() - t_start_sample_us;
}
return X;
}
llama_v2_token llama_v2_sample_token_greedy(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates) {
const int64_t t_start_sample_us = ggml_v2_time_us();
// Find max element
auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_v2_token_data & a, const llama_v2_token_data & b) {
return a.logit < b.logit;
});
llama_v2_token result = max_iter->id;
if (ctx) {
ctx->t_sample_us += ggml_v2_time_us() - t_start_sample_us;
ctx->n_sample++;
}
return result;
}
llama_v2_token llama_v2_sample_token(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates) {
assert(ctx);
const int64_t t_start_sample_us = ggml_v2_time_us();
llama_v2_sample_softmax(nullptr, candidates);
std::vector<float> probs;
probs.reserve(candidates->size);
for (size_t i = 0; i < candidates->size; ++i) {
probs.push_back(candidates->data[i].p);
}
std::discrete_distribution<> dist(probs.begin(), probs.end());
auto & rng = ctx->rng;
int idx = dist(rng);
llama_v2_token result = candidates->data[idx].id;
ctx->t_sample_us += ggml_v2_time_us() - t_start_sample_us;
ctx->n_sample++;
return result;
}
//
// quantization
//
static void llama_v2_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, enum llama_v2_ftype ftype, int nthread) {
ggml_v2_type quantized_type;
switch (ftype) {
case LLAMA_V2_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_V2_TYPE_Q4_0; break;
case LLAMA_V2_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_V2_TYPE_Q4_1; break;
case LLAMA_V2_FTYPE_MOSTLY_Q4_2: quantized_type = GGML_V2_TYPE_Q4_2; break;
case LLAMA_V2_FTYPE_MOSTLY_Q4_3: quantized_type = GGML_V2_TYPE_Q4_3; break;
case LLAMA_V2_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_V2_TYPE_Q5_0; break;
case LLAMA_V2_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_V2_TYPE_Q5_1; break;
case LLAMA_V2_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_V2_TYPE_Q8_0; break;
default: throw format("invalid output file type %d\n", ftype);
};
if (nthread <= 0) {
nthread = std::thread::hardware_concurrency();
}
std::unique_ptr<llama_v2_model_loader> model_loader(new llama_v2_model_loader(fname_inp, /*use_mmap*/ false,
/*vocab_only*/ false));
llama_v2_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), ftype);
size_t total_size_org = 0;
size_t total_size_new = 0;
std::vector<int64_t> hist_all(1 << 4, 0);
std::vector<std::thread> workers;
std::mutex mutex;
size_t idx = 0;
for (llama_v2_load_tensor & tensor : model_loader->tensors_map.tensors) {
llama_v2_buffer read_data;
read_data.resize(tensor.size);
tensor.data = read_data.addr;
model_loader->load_data_for(tensor);
printf("[%4zu/%4zu] %36s - %16s, type = %6s, ",
++idx, model_loader->tensors_map.tensors.size(),
tensor.name.c_str(), llama_v2_format_tensor_shape(tensor.ne).c_str(),
ggml_v2_type_name(tensor.type));
// This used to be a regex, but <regex> has an extreme cost to compile times.
bool quantize = tensor.name.rfind("weight") == tensor.name.size() - 6; // ends with 'weight'?
// quantize only 2D tensors
quantize &= (tensor.ne.size() == 2);
// uncomment this to keep the output layer in FP16
//if (tensor.name == "output.weight") {
// quantize = false;
//}
enum ggml_v2_type new_type;
void * new_data;
size_t new_size;
llama_v2_buffer work;
if (!quantize) {
new_type = tensor.type;
new_data = tensor.data;
new_size = tensor.size;
printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0);
} else {
new_type = quantized_type;
float * f32_data;
size_t nelements = tensor.ne.at(0) * tensor.ne.at(1);
llama_v2_buffer f32_conv_buf;
if (tensor.type == GGML_V2_TYPE_F32) {
f32_data = (float *) tensor.data;
} else if (tensor.type == GGML_V2_TYPE_F16) {
f32_conv_buf.resize(nelements * sizeof(float));
f32_data = (float *) f32_conv_buf.addr;
const auto * f16_data = (const ggml_v2_fp16_t *) tensor.data;
for (size_t i = 0; i < nelements; i++) {
f32_data[i] = ggml_v2_fp16_to_fp32(f16_data[i]);
}
} else {
throw format("type %s unsupported for integer quantization", ggml_v2_type_name(tensor.type));
}
printf("quantizing .. ");
fflush(stdout);
work.resize(nelements * 4); // upper bound on size
new_data = work.addr;
std::vector<int64_t> hist_cur(1 << 4, 0);
int chunk_size = 32 * 512;
const int nchunk = (nelements + chunk_size - 1)/chunk_size;
const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
if (nthread_use < 2) {
new_size = ggml_v2_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data());
} else {
size_t counter = 0;
new_size = 0;
auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements, chunk_size] () {
std::vector<int64_t> local_hist;
size_t local_size = 0;
while (true) {
std::unique_lock<std::mutex> lock(mutex);
size_t first = counter; counter += chunk_size;
if (first >= nelements) {
if (!local_hist.empty()) {
for (int j=0; j<int(local_hist.size()); ++j) {
hist_cur[j] += local_hist[j];
}
new_size += local_size;
}
break;
}
lock.unlock();
size_t last = std::min(nelements, first + chunk_size);
if (local_hist.empty()) {
local_hist.resize(hist_cur.size(), 0);
}
local_size += ggml_v2_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
}
};
if ((int) workers.size() < nthread_use - 1) {
workers.resize(nthread_use - 1);
}
for (int it = 0; it < nthread_use - 1; ++it) {
workers[it] = std::thread(compute);
}
compute();
for (int it = 0; it < nthread_use - 1; ++it) {
workers[it].join();
}
}
printf("size = %8.2f MB -> %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0);
for (size_t i = 0; i < hist_cur.size(); i++) {
hist_all[i] += hist_cur[i];
}
for (size_t i = 0; i < hist_cur.size(); i++) {
printf("%5.3f ", hist_cur[i] / float(nelements));
}
printf("\n");
}
total_size_org += tensor.size;
total_size_new += new_size;
file_saver.write_tensor(tensor, new_type, new_data, new_size);
}
printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
{
int64_t sum_all = 0;
for (size_t i = 0; i < hist_all.size(); i++) {
sum_all += hist_all[i];
}
printf("%s: hist: ", __func__);
for (size_t i = 0; i < hist_all.size(); i++) {
printf("%5.3f ", hist_all[i] / float(sum_all));
}
printf("\n");
}
}
//
// interface implementation
//
struct llama_v2_context * llama_v2_init_from_file(
const char * path_model,
struct llama_v2_context_params params) {
ggml_v2_time_init();
llama_v2_context * ctx = new llama_v2_context;
if (params.seed < 0 || params.seed==0xFFFFFFFF) {
params.seed = time(NULL);
}
unsigned cur_percentage = 0;
if (params.progress_callback == NULL) {
params.progress_callback_user_data = &cur_percentage;
params.progress_callback = [](float progress, void * ctx) {
unsigned * cur_percentage_p = (unsigned *) ctx;
unsigned percentage = (unsigned) (100 * progress);
while (percentage > *cur_percentage_p) {
++*cur_percentage_p;
fprintf(stderr, ".");
fflush(stderr);
if (percentage >= 100) {
fprintf(stderr, "\n");
}
}
};
}
ctx->rng = std::mt19937(params.seed);
ctx->logits_all = params.logits_all;
ggml_v2_type memory_type = params.f16_kv ? GGML_V2_TYPE_F16 : GGML_V2_TYPE_F32;
if (!llama_v2_model_load(path_model, *ctx, params.n_ctx, params.n_gpu_layers, memory_type,
params.use_mmap, params.use_mlock, params.vocab_only,
params.progress_callback, params.progress_callback_user_data)) {
fprintf(stderr, "%s: failed to load model\n", __func__);
llama_v2_free(ctx);
return nullptr;
}
// reserve memory for context buffers
if (!params.vocab_only) {
if (!kv_cache_init(ctx->model.hparams, ctx->model.kv_self, memory_type, ctx->model.hparams.n_ctx)) {
fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
llama_v2_free(ctx);
return nullptr;
}
{
const size_t memory_size = ggml_v2_nbytes(ctx->model.kv_self.k) + ggml_v2_nbytes(ctx->model.kv_self.v);
fprintf(stderr, "%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
}
const auto & hparams = ctx->model.hparams;
// resized during inference
if (params.logits_all) {
ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab);
} else {
ctx->logits.reserve(hparams.n_vocab);
}
if (params.embedding){
ctx->embedding.resize(hparams.n_embd);
}
ctx->buf_compute.resize(MEM_REQ_EVAL_2().at(ctx->model.type));
ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0_2().at(ctx->model.type));
ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1_2().at(ctx->model.type));
}
return ctx;
}
void llama_v2_free(struct llama_v2_context * ctx) {
delete ctx;
}
int llama_v2_model_quantize(
const char * fname_inp,
const char * fname_out,
enum llama_v2_ftype ftype,
int nthread) {
try {
llama_v2_model_quantize_internal(fname_inp, fname_out, ftype, nthread);
return 0;
} catch (const std::string & err) {
fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.c_str());
return 1;
}
}
int llama_v2_apply_lora_from_file_internal(struct llama_v2_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
fprintf(stderr, "%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
auto & model = ctx->model;
const int64_t t_start_lora_us = ggml_v2_time_us();
auto fin = std::ifstream(path_lora, std::ios::binary);
if (!fin) {
fprintf(stderr, "%s: failed to open '%s'\n", __func__, path_lora);
return 1;
}
// verify magic and version
{
uint32_t magic;
fin.read((char *) &magic, sizeof(magic));
if (magic != 'ggla') {
fprintf(stderr, "%s: bad file magic\n", __func__);
return 1;
}
uint32_t format_version;
fin.read((char *) &format_version, sizeof(format_version));
if (format_version != 1) {
fprintf(stderr, "%s: unsupported file version\n", __func__ );
return 1;
}
}
int32_t lora_r;
int32_t lora_alpha;
fin.read((char *) &lora_r, sizeof(lora_r));
fin.read((char *) &lora_alpha, sizeof(lora_alpha));
float scaling = (float)lora_alpha / (float)lora_r;
fprintf(stderr, "%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
// create a temporary ggml context to store the lora tensors
// todo: calculate size from biggest possible tensor
std::vector<uint8_t> lora_buf(1024ull * 1024ull * 1024ull);
struct ggml_v2_init_params params;
params.mem_size = lora_buf.size();
params.mem_buffer = lora_buf.data();
params.no_alloc = false;
ggml_v2_context * lora_ctx = ggml_v2_init(params);
std::unordered_map<std::string, struct ggml_v2_tensor *> lora_tensors;
// create a name -> tensor map of the model to accelerate lookups
std::unordered_map<std::string, struct ggml_v2_tensor*> model_tensors;
for (auto & kv: model.tensors_by_name) {
model_tensors.insert(kv);
}
// load base model
std::unique_ptr<llama_v2_model_loader> model_loader;
ggml_v2_context * base_ctx = NULL;
llama_v2_buffer base_buf;
if (path_base_model) {
fprintf(stderr, "%s: loading base model from '%s'\n", __func__, path_base_model);
model_loader.reset(new llama_v2_model_loader(path_base_model, /*use_mmap*/ true, /*vocab_only*/ false));
size_t ctx_size;
size_t mmapped_size;
model_loader->calc_sizes(&ctx_size, &mmapped_size);
base_buf.resize(ctx_size);
ggml_v2_init_params base_params;
base_params.mem_size = base_buf.size;
base_params.mem_buffer = base_buf.addr;
base_params.no_alloc = model_loader->use_mmap;
base_ctx = ggml_v2_init(base_params);
model_loader->ggml_v2_ctx = base_ctx;
// maybe this should in llama_v2_model_loader
if (model_loader->use_mmap) {
model_loader->mapping.reset(new llama_v2_mmap(&model_loader->file_loaders.at(0)->file, /* prefetch */ false));
}
}
// read tensors and apply
bool warned = false;
int n_tensors = 0;
while (true) {
int32_t n_dims;
int32_t length;
int32_t ftype;
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
if (fin.eof()) {
break;
}
int32_t ne[2] = { 1, 1 };
for (int i = 0; i < n_dims; ++i) {
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
}
std::string name;
{
char buf[1024];
fin.read(buf, length);
name = std::string(buf, length);
}
// check for lora suffix and get the type of tensor
const std::string lora_suffix = ".lora";
size_t pos = name.rfind(lora_suffix);
if (pos == std::string::npos) {
fprintf(stderr, "%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
return 1;
}
std::string lora_type = name.substr(pos + lora_suffix.length());
std::string base_name = name;
base_name.erase(pos);
// fprintf(stderr, "%s: %s => %s (lora type %s) ", __func__, name.c_str(),base_name.c_str(), lora_type.c_str());
if (model_tensors.find(base_name) == model_tensors.end()) {
fprintf(stderr, "%s: unknown tensor '%s' in lora adapter\n", __func__, name.data());
return 1;
}
// create ggml tensor
ggml_v2_type wtype;
switch (ftype) {
case 0: wtype = GGML_V2_TYPE_F32; break;
case 1: wtype = GGML_V2_TYPE_F16; break;
default:
{
fprintf(stderr, "%s: invalid tensor data type '%d'\n",
__func__, ftype);
return false;
}
}
ggml_v2_tensor* lora_tensor;
if (n_dims == 2) {
lora_tensor = ggml_v2_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]);
}
else {
fprintf(stderr, "%s: unsupported tensor dimension %d\n", __func__, n_dims);
return 1;
}
// load tensor data
size_t offset = fin.tellg();
size_t tensor_data_size = ggml_v2_nbytes(lora_tensor);
offset = (offset + 31) & -32;
fin.seekg(offset);
fin.read((char*)lora_tensor->data, tensor_data_size);
lora_tensors[name] = lora_tensor;
// check if we have both A and B tensors and apply
if (lora_tensors.find(base_name + ".loraA") != lora_tensors.end() &&
lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) {
ggml_v2_tensor * dest_t = model_tensors[base_name];
ggml_v2_tensor * base_t;
if (model_loader) {
// load from base model
if (model_loader->tensors_map.name_to_idx.find(base_name) == model_loader->tensors_map.name_to_idx.end()) {
fprintf(stderr, "%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
return 1;
}
size_t idx = model_loader->tensors_map.name_to_idx[base_name];
llama_v2_load_tensor & lt = model_loader->tensors_map.tensors[idx];
base_t = model_loader->get_tensor(base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] });
lt.data = (uint8_t *) lt.ggml_v2_tensor->data;
model_loader->load_data_for(lt);
lt.ggml_v2_tensor->data = lt.data;
}
else {
base_t = dest_t;
}
if (ggml_v2_is_quantized(base_t->type)) {
if (!warned) {
fprintf(stderr, "%s: warning: using a lora adapter with a quantized model may result in poor quality, "
"use a f16 or f32 base model with --lora-base\n", __func__);
warned = true;
}
}
ggml_v2_tensor * loraA = lora_tensors[base_name + ".loraA"];
ggml_v2_tensor * loraB = lora_tensors[base_name + ".loraB"];
if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
fprintf(stderr, "%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
" are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
return 1;
}
// w = w + BA*s
ggml_v2_tensor * BA = ggml_v2_mul_mat(lora_ctx, loraA, loraB);
if (scaling != 1.0f) {
ggml_v2_tensor * scale_tensor = ggml_v2_new_f32(lora_ctx, scaling);
BA = ggml_v2_scale_inplace(lora_ctx, BA, scale_tensor);
}
ggml_v2_tensor * r;
if (base_t == dest_t) {
r = ggml_v2_add_inplace(lora_ctx, dest_t, BA);
}
else {
r = ggml_v2_add(lora_ctx, base_t, BA);
r = ggml_v2_cpy(lora_ctx, r, dest_t);
}
struct ggml_v2_cgraph gf = ggml_v2_build_forward(r);
gf.n_threads = n_threads;
ggml_v2_graph_compute(lora_ctx, &gf);
// we won't need these tensors again, reset the context to save memory
ggml_v2_free(lora_ctx);
lora_ctx = ggml_v2_init(params);
lora_tensors.clear();
n_tensors++;
if (n_tensors % 4 == 0) {
fprintf(stderr, ".");
}
}
}
// TODO: this should be in a destructor, it will leak on failure
ggml_v2_free(lora_ctx);
if (base_ctx) {
ggml_v2_free(base_ctx);
}
const int64_t t_lora_us = ggml_v2_time_us() - t_start_lora_us;
fprintf(stderr, " done (%.2f ms)\n", t_lora_us / 1000.0);
return 0;
}
int llama_v2_apply_lora_from_file(struct llama_v2_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
try {
return llama_v2_apply_lora_from_file_internal(ctx, path_lora, path_base_model, n_threads);
} catch (const std::string & err) {
fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.c_str());
return 1;
}
}
int llama_v2_get_kv_cache_token_count(const struct llama_v2_context * ctx) {
return ctx->model.kv_self.n;
}
#define LLAMA_V2_MAX_RNG_STATE (64*1024)
void llama_v2_set_rng_seed(struct llama_v2_context * ctx, int seed) {
if (seed < 0 || seed==0xFFFFFFFF) {
seed = time(NULL);
}
ctx->rng.seed(seed);
}
// Returns the *maximum* size of the state
size_t llama_v2_get_state_size(const struct llama_v2_context * ctx) {
// we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
// for reference, std::mt19937(1337) serializes to 6701 bytes.
const size_t s_rng_size = sizeof(size_t);
const size_t s_rng = LLAMA_V2_MAX_RNG_STATE;
const size_t s_logits_capacity = sizeof(size_t);
const size_t s_logits_size = sizeof(size_t);
const size_t s_logits = ctx->logits.capacity() * sizeof(float);
const size_t s_embedding_size = sizeof(size_t);
const size_t s_embedding = ctx->embedding.size() * sizeof(float);
const size_t s_kv_size = sizeof(size_t);
const size_t s_kv_ntok = sizeof(int);
const size_t s_kv = ctx->model.kv_self.buf.size;
const size_t s_total = (
+ s_rng_size
+ s_rng
+ s_logits_capacity
+ s_logits_size
+ s_logits
+ s_embedding_size
+ s_embedding
+ s_kv_size
+ s_kv_ntok
+ s_kv
);
return s_total;
}
// Copies the state to the specified destination address
size_t llama_v2_copy_state_data(struct llama_v2_context * ctx, uint8_t * dst) {
uint8_t * out = dst;
// copy rng
{
std::stringstream rng_ss;
rng_ss << ctx->rng;
const size_t rng_size = rng_ss.str().size();
char rng_buf[LLAMA_V2_MAX_RNG_STATE];
memset(&rng_buf[0], 0, LLAMA_V2_MAX_RNG_STATE);
memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
memcpy(out, &rng_size, sizeof(rng_size)); out += sizeof(rng_size);
memcpy(out, &rng_buf[0], LLAMA_V2_MAX_RNG_STATE); out += LLAMA_V2_MAX_RNG_STATE;
}
// copy logits
{
const size_t logits_cap = ctx->logits.capacity();
const size_t logits_size = ctx->logits.size();
memcpy(out, &logits_cap, sizeof(logits_cap)); out += sizeof(logits_cap);
memcpy(out, &logits_size, sizeof(logits_size)); out += sizeof(logits_size);
if (logits_size) {
memcpy(out, ctx->logits.data(), logits_size * sizeof(float));
}
out += logits_cap * sizeof(float);
}
// copy embeddings
{
const size_t embedding_size = ctx->embedding.size();
memcpy(out, &embedding_size, sizeof(embedding_size)); out += sizeof(embedding_size);
if (embedding_size) {
memcpy(out, ctx->embedding.data(), embedding_size * sizeof(float));
out += embedding_size * sizeof(float);
}
}
// copy kv cache
{
const auto & kv_self = ctx->model.kv_self;
const auto & hparams = ctx->model.hparams;
const int n_layer = hparams.n_layer;
const int n_embd = hparams.n_embd;
const int n_ctx = hparams.n_ctx;
const size_t kv_size = kv_self.buf.size;
const int kv_ntok = llama_v2_get_kv_cache_token_count(ctx);
memcpy(out, &kv_size, sizeof(kv_size)); out += sizeof(kv_size);
memcpy(out, &kv_ntok, sizeof(kv_ntok)); out += sizeof(kv_ntok);
if (kv_size) {
const size_t elt_size = ggml_v2_element_size(kv_self.k);
char buffer[4096];
ggml_v2_context * cpy_ctx = ggml_v2_init({ sizeof(buffer), buffer, /* no_alloc */ true });
ggml_v2_cgraph gf{};
gf.n_threads = 1;
ggml_v2_tensor * kout3d = ggml_v2_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
kout3d->data = out;
out += ggml_v2_nbytes(kout3d);
ggml_v2_tensor * vout3d = ggml_v2_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
vout3d->data = out;
out += ggml_v2_nbytes(vout3d);
ggml_v2_tensor * k3d = ggml_v2_view_3d(cpy_ctx, kv_self.k,
n_embd, kv_ntok, n_layer,
elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
ggml_v2_tensor * v3d = ggml_v2_view_3d(cpy_ctx, kv_self.v,
kv_ntok, n_embd, n_layer,
elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
ggml_v2_build_forward_expand(&gf, ggml_v2_cpy(cpy_ctx, k3d, kout3d));
ggml_v2_build_forward_expand(&gf, ggml_v2_cpy(cpy_ctx, v3d, vout3d));
ggml_v2_graph_compute(cpy_ctx, &gf);
ggml_v2_free(cpy_ctx);
}
}
const size_t written = out - dst;
const size_t max_size = llama_v2_get_state_size(ctx);
LLAMA_V2_ASSERT(written <= max_size);
return written;
}
// Sets the state reading from the specified source address
size_t llama_v2_set_state_data(struct llama_v2_context * ctx, const uint8_t * src) {
const uint8_t * inp = src;
// set rng
{
size_t rng_size;
char rng_buf[LLAMA_V2_MAX_RNG_STATE];
memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
memcpy(&rng_buf[0], inp, LLAMA_V2_MAX_RNG_STATE); inp += LLAMA_V2_MAX_RNG_STATE;
std::stringstream rng_ss;
rng_ss.str(std::string(&rng_buf[0], rng_size));
rng_ss >> ctx->rng;
LLAMA_V2_ASSERT(rng_ss.fail() == false);
}
// set logits
{
size_t logits_cap;
size_t logits_size;
memcpy(&logits_cap, inp, sizeof(logits_cap)); inp += sizeof(logits_cap);
memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
LLAMA_V2_ASSERT(ctx->logits.capacity() == logits_cap);
if (logits_size) {
ctx->logits.resize(logits_size);
memcpy(ctx->logits.data(), inp, logits_size * sizeof(float));
}
inp += logits_cap * sizeof(float);
}
// set embeddings
{
size_t embedding_size;
memcpy(&embedding_size, inp, sizeof(embedding_size)); inp += sizeof(embedding_size);
LLAMA_V2_ASSERT(ctx->embedding.capacity() == embedding_size);
if (embedding_size) {
memcpy(ctx->embedding.data(), inp, embedding_size * sizeof(float));
inp += embedding_size * sizeof(float);
}
}
// set kv cache
{
const auto & kv_self = ctx->model.kv_self;
const auto & hparams = ctx->model.hparams;
const int n_layer = hparams.n_layer;
const int n_embd = hparams.n_embd;
const int n_ctx = hparams.n_ctx;
size_t kv_size;
int kv_ntok;
memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
memcpy(&kv_ntok, inp, sizeof(kv_ntok)); inp += sizeof(kv_ntok);
if (kv_size) {
LLAMA_V2_ASSERT(kv_self.buf.size == kv_size);
const size_t elt_size = ggml_v2_element_size(kv_self.k);
char buffer[4096];
ggml_v2_context * cpy_ctx = ggml_v2_init({ sizeof(buffer), buffer, /* no_alloc */ true });
ggml_v2_cgraph gf{};
gf.n_threads = 1;
ggml_v2_tensor * kin3d = ggml_v2_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
kin3d->data = (void *) inp;
inp += ggml_v2_nbytes(kin3d);
ggml_v2_tensor * vin3d = ggml_v2_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
vin3d->data = (void *) inp;
inp += ggml_v2_nbytes(vin3d);
ggml_v2_tensor * k3d = ggml_v2_view_3d(cpy_ctx, kv_self.k,
n_embd, kv_ntok, n_layer,
elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
ggml_v2_tensor * v3d = ggml_v2_view_3d(cpy_ctx, kv_self.v,
kv_ntok, n_embd, n_layer,
elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
ggml_v2_build_forward_expand(&gf, ggml_v2_cpy(cpy_ctx, kin3d, k3d));
ggml_v2_build_forward_expand(&gf, ggml_v2_cpy(cpy_ctx, vin3d, v3d));
ggml_v2_graph_compute(cpy_ctx, &gf);
ggml_v2_free(cpy_ctx);
}
ctx->model.kv_self.n = kv_ntok;
}
const size_t nread = inp - src;
const size_t max_size = llama_v2_get_state_size(ctx);
LLAMA_V2_ASSERT(nread <= max_size);
return nread;
}
bool llama_v2_load_session_file(struct llama_v2_context * ctx, const char * path_session, llama_v2_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
llama_v2_file file(path_session, "rb");
// sanity checks
{
const uint32_t magic = file.read_u32();
const uint32_t version = file.read_u32();
if (magic != LLAMA_V2_SESSION_MAGIC || version != LLAMA_V2_SESSION_VERSION) {
fprintf(stderr, "%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
return false;
}
llama_v2_hparams session_hparams;
file.read_raw(&session_hparams, sizeof(llama_v2_hparams));
if (session_hparams != ctx->model.hparams) {
fprintf(stderr, "%s : model hparams didn't match from session file!\n", __func__);
return false;
}
}
// load the prompt
{
const uint32_t n_token_count = file.read_u32();
if (n_token_count > n_token_capacity) {
fprintf(stderr, "%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
return false;
}
file.read_raw(tokens_out, sizeof(llama_v2_token) * n_token_count);
*n_token_count_out = n_token_count;
}
// restore the context state
{
const size_t n_state_size_cur = file.size - file.tell();
const size_t n_state_size_max = llama_v2_get_state_size(ctx);
if (n_state_size_cur > n_state_size_max) {
fprintf(stderr, "%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
return false;
}
std::vector<uint8_t> state_data(n_state_size_max);
file.read_raw(state_data.data(), n_state_size_cur);
llama_v2_set_state_data(ctx, state_data.data());
}
return true;
}
bool llama_v2_save_session_file(struct llama_v2_context * ctx, const char * path_session, const llama_v2_token * tokens, size_t n_token_count) {
llama_v2_file file(path_session, "wb");
file.write_u32(LLAMA_V2_SESSION_MAGIC);
file.write_u32(LLAMA_V2_SESSION_VERSION);
file.write_raw(&ctx->model.hparams, sizeof(llama_v2_hparams));
// save the prompt
file.write_u32((uint32_t) n_token_count);
file.write_raw(tokens, sizeof(llama_v2_token) * n_token_count);
// save the context state
{
const size_t n_state_size_max = llama_v2_get_state_size(ctx);
std::vector<uint8_t> state_data(n_state_size_max);
const size_t n_state_size_cur = llama_v2_copy_state_data(ctx, state_data.data());
file.write_raw(state_data.data(), n_state_size_cur);
}
return true;
}
int llama_v2_eval(
struct llama_v2_context * ctx,
const llama_v2_token * tokens,
int n_tokens,
int n_past,
int n_threads) {
if (!llama_v2_eval_internal(*ctx, tokens, n_tokens, n_past, n_threads)) {
fprintf(stderr, "%s: failed to eval\n", __func__);
return 1;
}
// get a more accurate load time, upon first eval
// TODO: fix this
if (!ctx->has_evaluated_once) {
ctx->t_load_us = ggml_v2_time_us() - ctx->t_start_us;
ctx->has_evaluated_once = true;
}
return 0;
}
int llama_v2_tokenize(
struct llama_v2_context * ctx,
const char * text,
llama_v2_token * tokens,
int n_max_tokens,
bool add_bos) {
auto res = llama_v2_tokenize(ctx->vocab, text, add_bos);
if (n_max_tokens < (int) res.size()) {
fprintf(stderr, "%s: too many tokens\n", __func__);
return -((int) res.size());
}
for (size_t i = 0; i < res.size(); i++) {
tokens[i] = res[i];
}
return res.size();
}
int llama_v2_n_vocab(const struct llama_v2_context * ctx) {
return ctx->vocab.id_to_token.size();
}
int llama_v2_n_ctx(const struct llama_v2_context * ctx) {
return ctx->model.hparams.n_ctx;
}
int llama_v2_n_embd(const struct llama_v2_context * ctx) {
return ctx->model.hparams.n_embd;
}
float * llama_v2_get_logits(struct llama_v2_context * ctx) {
return ctx->logits.data();
}
float * llama_v2_get_embeddings(struct llama_v2_context * ctx) {
return ctx->embedding.data();
}
const char * llama_v2_token_to_str(const struct llama_v2_context * ctx, llama_v2_token token) {
if (token >= llama_v2_n_vocab(ctx)) {
return nullptr;
}
return ctx->vocab.id_to_token[token].tok.c_str();
}
llama_v2_token llama_v2_token_bos() {
return 1;
}
llama_v2_token llama_v2_token_eos() {
return 2;
}
llama_v2_token llama_v2_token_nl() {
return 13;
}
void llama_v2_print_timings(struct llama_v2_context * ctx) {
const int64_t t_end_us = ggml_v2_time_us();
const int32_t n_sample = std::max(1, ctx->n_sample);
const int32_t n_eval = std::max(1, ctx->n_eval);
const int32_t n_p_eval = std::max(1, ctx->n_p_eval);
fprintf(stderr, "\n");
fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0);
fprintf(stderr, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_sample_us, n_sample, 1e-3 * ctx->t_sample_us / n_sample);
fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_p_eval_us, n_p_eval, 1e-3 * ctx->t_p_eval_us / n_p_eval);
fprintf(stderr, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_eval_us, n_eval, 1e-3 * ctx->t_eval_us / n_eval);
fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0);
}
void llama_v2_reset_timings(struct llama_v2_context * ctx) {
ctx->t_start_us = ggml_v2_time_us();
ctx->t_sample_us = ctx->n_sample = 0;
ctx->t_eval_us = ctx->n_eval = 0;
ctx->t_p_eval_us = ctx->n_p_eval = 0;
}
const char * llama_v2_print_system_info(void) {
static std::string s;
s = "";
s += "AVX = " + std::to_string(ggml_v2_cpu_has_avx()) + " | ";
s += "AVX2 = " + std::to_string(ggml_v2_cpu_has_avx2()) + " | ";
s += "AVX512 = " + std::to_string(ggml_v2_cpu_has_avx512()) + " | ";
s += "AVX512_VBMI = " + std::to_string(ggml_v2_cpu_has_avx512_vbmi()) + " | ";
s += "AVX512_VNNI = " + std::to_string(ggml_v2_cpu_has_avx512_vnni()) + " | ";
s += "FMA = " + std::to_string(ggml_v2_cpu_has_fma()) + " | ";
s += "NEON = " + std::to_string(ggml_v2_cpu_has_neon()) + " | ";
s += "ARM_FMA = " + std::to_string(ggml_v2_cpu_has_arm_fma()) + " | ";
s += "F16C = " + std::to_string(ggml_v2_cpu_has_f16c()) + " | ";
s += "FP16_VA = " + std::to_string(ggml_v2_cpu_has_fp16_va()) + " | ";
s += "WASM_SIMD = " + std::to_string(ggml_v2_cpu_has_wasm_simd()) + " | ";
s += "BLAS = " + std::to_string(ggml_v2_cpu_has_blas()) + " | ";
s += "SSE3 = " + std::to_string(ggml_v2_cpu_has_sse3()) + " | ";
s += "VSX = " + std::to_string(ggml_v2_cpu_has_vsx()) + " | ";
return s.c_str();
}
// For internal test use
std::vector<std::pair<std::string, struct ggml_v2_tensor *>>& llama_v2_internal_get_tensor_map(struct llama_v2_context * ctx) {
return ctx->model.tensors_by_name;
}
// TODO: Calculate this constant from the vocabulary
#define MAX_TOKEN_LEN 18
// SentencePiece implementation after https://guillaume-be.github.io/2020-05-30/sentence_piece
std::vector<llama_v2_token> legacy_llama_v2_tokenize(const llama_v2_vocab & vocab, const std::string & text, bool bos) {
std::vector<llama_v2_token> res;
std::vector<int> score;
std::vector<llama_v2_token> prev;
int len = text.length();
score.resize(len + 1);
prev.resize(len + 1);
// Forward pass
for (int i = 0; i < len; i++) {
int max_len = std::min(len - i, MAX_TOKEN_LEN);
for (int sub_len = 1; sub_len <= max_len; sub_len++) {
auto sub = text.substr(i, sub_len);
auto token = vocab.token_to_id.find(sub);
if (token != vocab.token_to_id.end()) {
int token_score = sub.length() * sub.length();
int local_score = score[i] + token_score;
int next = i + sub_len;
if (score[next] < local_score) {
score[next] = local_score;
prev[next] = (*token).second;
}
}
}
}
// Backward pass
int i = len;
while (i > 0) {
llama_v2_token token_id = prev[i];
if (token_id == 0) {
// TODO: Return error or something more meaningful
printf("failed to tokenize string!\n");
break;
}
res.push_back(token_id);
auto token = vocab.id_to_token[token_id].tok;
i -= token.length();
}
if (bos) {
res.push_back(1); // TODO: replace with vocab.bos
}
// Pieces are in reverse order so correct that
std::reverse(res.begin(), res.end());
return res;
}
int legacy_llama_v2_tokenize(
struct llama_v2_context * ctx,
const char * text,
llama_v2_token * tokens,
int n_max_tokens,
bool add_bos) {
auto res = legacy_llama_v2_tokenize(ctx->vocab, text, add_bos);
if (n_max_tokens < (int) res.size()) {
fprintf(stderr, "%s: too many tokens\n", __func__);
return -((int) res.size());
}
for (size_t i = 0; i < res.size(); i++) {
tokens[i] = res[i];
}
return res.size();
}
std::vector<llama_v2_token> legacy_llama_v2_tokenize(struct llama_v2_context * ctx, const std::string & text, bool add_bos) {
std::vector<llama_v2_token> res(8096);
int n = legacy_llama_v2_tokenize(ctx, text.c_str(), res.data(), res.size(), add_bos);
res.resize(n);
return res;
}
std::vector<llama_token> llama_v2_tokenize(struct llama_v2_context * ctx, const std::string & text, bool add_bos) {
// initialize to prompt numer of chars, since n_tokens <= n_prompt_chars
std::vector<llama_token> res(text.size() + (int) add_bos);
const int n = llama_v2_tokenize(ctx, text.c_str(), res.data(), res.size(), add_bos);
assert(n >= 0);
res.resize(n);
return res;
} |